Spaces:
Runtime error
Runtime error
Upload pose.py
Browse files- src/pose.py +1482 -0
src/pose.py
ADDED
@@ -0,0 +1,1482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import math
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
import PIL.Image as Image
|
8 |
+
import selfcontact
|
9 |
+
import selfcontact.losses
|
10 |
+
import shapely.geometry
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.optim as optim
|
14 |
+
import torchgeometry
|
15 |
+
import tqdm
|
16 |
+
import trimesh
|
17 |
+
from skimage import measure
|
18 |
+
|
19 |
+
import fist_pose
|
20 |
+
import hist_cub
|
21 |
+
import losses
|
22 |
+
import pose_estimation
|
23 |
+
import spin
|
24 |
+
import utils
|
25 |
+
|
26 |
+
PE_KSP_TO_SPIN = {
|
27 |
+
"Head": "Head",
|
28 |
+
"Neck": "Neck",
|
29 |
+
"Right Shoulder": "Right ForeArm",
|
30 |
+
"Right Arm": "Right Arm",
|
31 |
+
"Right Hand": "Right Hand",
|
32 |
+
"Left Shoulder": "Left ForeArm",
|
33 |
+
"Left Arm": "Left Arm",
|
34 |
+
"Left Hand": "Left Hand",
|
35 |
+
"Spine": "Spine1",
|
36 |
+
"Hips": "Hips",
|
37 |
+
"Right Upper Leg": "Right Upper Leg",
|
38 |
+
"Right Leg": "Right Leg",
|
39 |
+
"Right Foot": "Right Foot",
|
40 |
+
"Left Upper Leg": "Left Upper Leg",
|
41 |
+
"Left Leg": "Left Leg",
|
42 |
+
"Left Foot": "Left Foot",
|
43 |
+
"Left Toe": "Left Toe",
|
44 |
+
"Right Toe": "Right Toe",
|
45 |
+
}
|
46 |
+
MODELS_DIR = "models"
|
47 |
+
|
48 |
+
|
49 |
+
def parse_args():
|
50 |
+
parser = argparse.ArgumentParser()
|
51 |
+
|
52 |
+
parser.add_argument(
|
53 |
+
"--pose-estimation-model-path",
|
54 |
+
type=str,
|
55 |
+
default=f"./{MODELS_DIR}/hrn_w48_384x288.onnx",
|
56 |
+
help="Pose Estimation model",
|
57 |
+
)
|
58 |
+
|
59 |
+
parser.add_argument(
|
60 |
+
"--contact-model-path",
|
61 |
+
type=str,
|
62 |
+
default=f"./{MODELS_DIR}/contact_hrn_w32_256x192.onnx",
|
63 |
+
help="Contact model",
|
64 |
+
)
|
65 |
+
|
66 |
+
parser.add_argument(
|
67 |
+
"--device",
|
68 |
+
type=str,
|
69 |
+
default="cuda",
|
70 |
+
choices=["cpu", "cuda"],
|
71 |
+
help="Torch device",
|
72 |
+
)
|
73 |
+
|
74 |
+
parser.add_argument(
|
75 |
+
"--spin-model-path",
|
76 |
+
type=str,
|
77 |
+
default=f"./{MODELS_DIR}/spin_model_smplx_eft_18.pt",
|
78 |
+
help="SPIN model path",
|
79 |
+
)
|
80 |
+
|
81 |
+
parser.add_argument(
|
82 |
+
"--smpl-type",
|
83 |
+
type=str,
|
84 |
+
default="smplx",
|
85 |
+
choices=["smplx"],
|
86 |
+
help="SMPL model type",
|
87 |
+
)
|
88 |
+
parser.add_argument(
|
89 |
+
"--smpl-model-dir",
|
90 |
+
type=str,
|
91 |
+
default=f"./{MODELS_DIR}/models/smplx",
|
92 |
+
help="SMPL model dir",
|
93 |
+
)
|
94 |
+
parser.add_argument(
|
95 |
+
"--smpl-mean-params-path",
|
96 |
+
type=str,
|
97 |
+
default=f"./{MODELS_DIR}/data/smpl_mean_params.npz",
|
98 |
+
help="SMPL mean params",
|
99 |
+
)
|
100 |
+
parser.add_argument(
|
101 |
+
"--essentials-dir",
|
102 |
+
type=str,
|
103 |
+
default=f"./{MODELS_DIR}/smplify-xmc-essentials",
|
104 |
+
help="SMPL Essentials folder for contacts",
|
105 |
+
)
|
106 |
+
|
107 |
+
parser.add_argument(
|
108 |
+
"--parametrization-path",
|
109 |
+
type=str,
|
110 |
+
default=f"./{MODELS_DIR}/smplx_parametrization/parametrization.npy",
|
111 |
+
help="Parametrization path",
|
112 |
+
)
|
113 |
+
parser.add_argument(
|
114 |
+
"--bone-parametrization-path",
|
115 |
+
type=str,
|
116 |
+
default=f"./{MODELS_DIR}/smplx_parametrization/bone_to_param2.npy",
|
117 |
+
help="Bone parametrization path",
|
118 |
+
)
|
119 |
+
parser.add_argument(
|
120 |
+
"--foot-inds-path",
|
121 |
+
type=str,
|
122 |
+
default=f"./{MODELS_DIR}/smplx_parametrization/foot_inds.npy",
|
123 |
+
help="Foot indinces",
|
124 |
+
)
|
125 |
+
|
126 |
+
parser.add_argument(
|
127 |
+
"--save-path",
|
128 |
+
type=str,
|
129 |
+
required=True,
|
130 |
+
help="Path to save the results",
|
131 |
+
)
|
132 |
+
|
133 |
+
parser.add_argument(
|
134 |
+
"--img-path",
|
135 |
+
type=str,
|
136 |
+
required=True,
|
137 |
+
help="Path to img to test",
|
138 |
+
)
|
139 |
+
|
140 |
+
parser.add_argument(
|
141 |
+
"--use-contacts",
|
142 |
+
action="store_true",
|
143 |
+
help="Use contact model",
|
144 |
+
)
|
145 |
+
parser.add_argument(
|
146 |
+
"--use-msc",
|
147 |
+
action="store_true",
|
148 |
+
help="Use MSC loss",
|
149 |
+
)
|
150 |
+
parser.add_argument(
|
151 |
+
"--use-natural",
|
152 |
+
action="store_true",
|
153 |
+
help="Use regularity",
|
154 |
+
)
|
155 |
+
parser.add_argument(
|
156 |
+
"--use-cos",
|
157 |
+
action="store_true",
|
158 |
+
help="Use cos model",
|
159 |
+
)
|
160 |
+
parser.add_argument(
|
161 |
+
"--use-angle-transf",
|
162 |
+
action="store_true",
|
163 |
+
help="Use cube foreshortening transformation",
|
164 |
+
)
|
165 |
+
|
166 |
+
parser.add_argument(
|
167 |
+
"--c-mse",
|
168 |
+
type=float,
|
169 |
+
default=0,
|
170 |
+
help="MSE weight",
|
171 |
+
)
|
172 |
+
parser.add_argument(
|
173 |
+
"--c-par",
|
174 |
+
type=float,
|
175 |
+
default=10,
|
176 |
+
help="Parallel weight",
|
177 |
+
)
|
178 |
+
|
179 |
+
parser.add_argument(
|
180 |
+
"--c-f",
|
181 |
+
type=float,
|
182 |
+
default=1000,
|
183 |
+
help="Cos coef",
|
184 |
+
)
|
185 |
+
parser.add_argument(
|
186 |
+
"--c-parallel",
|
187 |
+
type=float,
|
188 |
+
default=100,
|
189 |
+
help="Parallel weight",
|
190 |
+
)
|
191 |
+
parser.add_argument(
|
192 |
+
"--c-reg",
|
193 |
+
type=float,
|
194 |
+
default=1000,
|
195 |
+
help="Regularity weight",
|
196 |
+
)
|
197 |
+
parser.add_argument(
|
198 |
+
"--c-cont2d",
|
199 |
+
type=float,
|
200 |
+
default=1,
|
201 |
+
help="Contact 2D weight",
|
202 |
+
)
|
203 |
+
parser.add_argument(
|
204 |
+
"--c-msc",
|
205 |
+
type=float,
|
206 |
+
default=17_500,
|
207 |
+
help="MSC weight",
|
208 |
+
)
|
209 |
+
|
210 |
+
parser.add_argument(
|
211 |
+
"--fist",
|
212 |
+
nargs="+",
|
213 |
+
type=str,
|
214 |
+
choices=list(fist_pose.INT_TO_FIST),
|
215 |
+
)
|
216 |
+
|
217 |
+
args = parser.parse_args()
|
218 |
+
|
219 |
+
return args
|
220 |
+
|
221 |
+
|
222 |
+
def freeze_layers(model):
|
223 |
+
for module in model.modules():
|
224 |
+
if type(module) is False:
|
225 |
+
continue
|
226 |
+
|
227 |
+
if isinstance(module, nn.modules.batchnorm._BatchNorm):
|
228 |
+
module.eval()
|
229 |
+
for m in module.parameters():
|
230 |
+
m.requires_grad = False
|
231 |
+
|
232 |
+
if isinstance(module, nn.Dropout):
|
233 |
+
module.eval()
|
234 |
+
for m in module.parameters():
|
235 |
+
m.requires_grad = False
|
236 |
+
|
237 |
+
|
238 |
+
def project_and_normalize_to_spin(vertices_3d, camera):
|
239 |
+
vertices_2d = vertices_3d # [:, :2]
|
240 |
+
|
241 |
+
scale, translate = camera[0], camera[1:]
|
242 |
+
translate = scale.new_zeros(3)
|
243 |
+
translate[:2] = camera[1:]
|
244 |
+
|
245 |
+
vertices_2d = vertices_2d + translate
|
246 |
+
vertices_2d = scale * vertices_2d + 1
|
247 |
+
vertices_2d = spin.constants.IMG_RES / 2 * vertices_2d
|
248 |
+
|
249 |
+
return vertices_2d
|
250 |
+
|
251 |
+
|
252 |
+
def project_and_normalize_to_spin_legs(vertices_3d, A, camera):
|
253 |
+
A, J = A
|
254 |
+
A = A[0]
|
255 |
+
J = J[0]
|
256 |
+
L = vertices_3d.new_tensor(
|
257 |
+
[
|
258 |
+
[0.98619063, 0.16560926, 0.00127302],
|
259 |
+
[-0.16560601, 0.98603675, 0.01749799],
|
260 |
+
[0.00164258, -0.01746717, 0.99984609],
|
261 |
+
]
|
262 |
+
)
|
263 |
+
R = vertices_3d.new_tensor(
|
264 |
+
[
|
265 |
+
[0.9910211, -0.13368178, -0.0025208],
|
266 |
+
[0.13367888, 0.99027076, 0.03864949],
|
267 |
+
[-0.00267045, -0.03863944, 0.99924965],
|
268 |
+
]
|
269 |
+
)
|
270 |
+
scale = camera[0]
|
271 |
+
R = A[2, :3, :3] @ R # 2 - right
|
272 |
+
L = A[1, :3, :3] @ L # 1 - left
|
273 |
+
r = J[5] - J[2]
|
274 |
+
l = J[4] - J[1]
|
275 |
+
|
276 |
+
rleg = scale * spin.constants.IMG_RES / 2 * R @ r
|
277 |
+
lleg = scale * spin.constants.IMG_RES / 2 * L @ l
|
278 |
+
|
279 |
+
rleg = rleg[:2]
|
280 |
+
lleg = lleg[:2]
|
281 |
+
|
282 |
+
return rleg, lleg
|
283 |
+
|
284 |
+
|
285 |
+
def rotation_matrix_to_angle_axis(rotmat):
|
286 |
+
bs, n_joints, *_ = rotmat.size()
|
287 |
+
rotmat = torch.cat(
|
288 |
+
[
|
289 |
+
rotmat.view(-1, 3, 3),
|
290 |
+
rotmat.new_tensor([0, 0, 1], dtype=torch.float32)
|
291 |
+
.view(bs, 3, 1)
|
292 |
+
.expand(n_joints, -1, -1),
|
293 |
+
],
|
294 |
+
dim=-1,
|
295 |
+
)
|
296 |
+
aa = torchgeometry.rotation_matrix_to_angle_axis(rotmat)
|
297 |
+
aa = aa.reshape(bs, 3 * n_joints)
|
298 |
+
|
299 |
+
return aa
|
300 |
+
|
301 |
+
|
302 |
+
def get_smpl_output(smpl, rotmat, betas, use_betas=True, zero_hands=False):
|
303 |
+
if smpl.name() == "SMPL":
|
304 |
+
smpl_output = smpl(
|
305 |
+
betas=betas if use_betas else None,
|
306 |
+
body_pose=rotmat[:, 1:],
|
307 |
+
global_orient=rotmat[:, 0].unsqueeze(1),
|
308 |
+
pose2rot=False,
|
309 |
+
)
|
310 |
+
elif smpl.name() == "SMPL-X":
|
311 |
+
rotmat = rotation_matrix_to_angle_axis(rotmat)
|
312 |
+
if zero_hands:
|
313 |
+
for i in [20, 21]:
|
314 |
+
rotmat[:, 3 * i : 3 * (i + 1)] = 0
|
315 |
+
|
316 |
+
for i in [12, 15]: # neck, head
|
317 |
+
rotmat[:, 3 * i + 1] = 0 # y
|
318 |
+
smpl_output = smpl(
|
319 |
+
betas=betas if use_betas else None,
|
320 |
+
body_pose=rotmat[:, 3:],
|
321 |
+
global_orient=rotmat[:, :3],
|
322 |
+
pose2rot=True,
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
raise NotImplementedError
|
326 |
+
|
327 |
+
return smpl_output, rotmat
|
328 |
+
|
329 |
+
|
330 |
+
def get_predictions(model_hmr, smpl, input_img, use_betas=True, zero_hands=False):
|
331 |
+
input_img = input_img.unsqueeze(0)
|
332 |
+
rotmat, betas, camera = model_hmr(input_img)
|
333 |
+
|
334 |
+
smpl_output, rotmat = get_smpl_output(
|
335 |
+
smpl, rotmat, betas, use_betas=use_betas, zero_hands=zero_hands
|
336 |
+
)
|
337 |
+
|
338 |
+
rotmat = rotmat.squeeze(0)
|
339 |
+
betas = betas.squeeze(0)
|
340 |
+
camera = camera.squeeze(0)
|
341 |
+
z = smpl_output.joints
|
342 |
+
z = z.squeeze(0)
|
343 |
+
|
344 |
+
return rotmat, betas, camera, smpl_output, z
|
345 |
+
|
346 |
+
|
347 |
+
def get_pred_and_data(
|
348 |
+
model_hmr, smpl, selector, input_img, use_betas=True, zero_hands=False
|
349 |
+
):
|
350 |
+
rotmat, betas, camera, smpl_output, zz = get_predictions(
|
351 |
+
model_hmr, smpl, input_img, use_betas=use_betas, zero_hands=zero_hands
|
352 |
+
)
|
353 |
+
|
354 |
+
joints = smpl_output.joints.squeeze(0)
|
355 |
+
joints_2d = project_and_normalize_to_spin(joints, camera)
|
356 |
+
rleg, lleg = project_and_normalize_to_spin_legs(joints, smpl_output.A, camera)
|
357 |
+
joints_2d_orig = joints_2d
|
358 |
+
joints_2d = joints_2d[selector]
|
359 |
+
|
360 |
+
vertices = smpl_output.vertices.squeeze(0)
|
361 |
+
vertices_2d = project_and_normalize_to_spin(vertices, camera)
|
362 |
+
|
363 |
+
zz = zz[selector]
|
364 |
+
|
365 |
+
return (
|
366 |
+
rotmat,
|
367 |
+
betas,
|
368 |
+
camera,
|
369 |
+
joints_2d,
|
370 |
+
zz,
|
371 |
+
vertices_2d,
|
372 |
+
smpl_output,
|
373 |
+
(rleg, lleg),
|
374 |
+
joints_2d_orig,
|
375 |
+
)
|
376 |
+
|
377 |
+
|
378 |
+
def normalize_keypoints_to_spin(keypoints_2d, img_size):
|
379 |
+
h, w = img_size
|
380 |
+
if h > w: # vertically
|
381 |
+
ax1 = 1
|
382 |
+
ax2 = 0
|
383 |
+
else: # horizontal
|
384 |
+
ax1 = 0
|
385 |
+
ax2 = 1
|
386 |
+
|
387 |
+
shift = (img_size[ax1] - img_size[ax2]) / 2
|
388 |
+
scale = spin.constants.IMG_RES / img_size[ax2]
|
389 |
+
keypoints_2d_normalized = np.copy(keypoints_2d)
|
390 |
+
keypoints_2d_normalized[:, ax2] -= shift
|
391 |
+
keypoints_2d_normalized *= scale
|
392 |
+
|
393 |
+
return keypoints_2d_normalized, shift, scale, ax2
|
394 |
+
|
395 |
+
|
396 |
+
def unnormalize_keypoints_from_spin(keypoints_2d, shift, scale, ax2):
|
397 |
+
keypoints_2d_normalized = np.copy(keypoints_2d)
|
398 |
+
keypoints_2d_normalized /= scale
|
399 |
+
keypoints_2d_normalized[:, ax2] += shift
|
400 |
+
|
401 |
+
return keypoints_2d_normalized
|
402 |
+
|
403 |
+
|
404 |
+
def get_vertices_in_heatmap(contact_heatmap):
|
405 |
+
contact_heatmap_size = contact_heatmap.shape[:2]
|
406 |
+
label = measure.label(contact_heatmap)
|
407 |
+
|
408 |
+
y_data_conts = []
|
409 |
+
for i in range(1, label.max() + 1):
|
410 |
+
predicted_kps_contact = np.vstack(np.nonzero(label == i)[::-1]).T.astype(
|
411 |
+
"float"
|
412 |
+
)
|
413 |
+
predicted_kps_contact_scaled, *_ = normalize_keypoints_to_spin(
|
414 |
+
predicted_kps_contact, contact_heatmap_size
|
415 |
+
)
|
416 |
+
y_data_cont = torch.from_numpy(predicted_kps_contact_scaled).int().tolist()
|
417 |
+
y_data_cont = shapely.geometry.MultiPoint(y_data_cont).convex_hull
|
418 |
+
y_data_conts.append(y_data_cont)
|
419 |
+
|
420 |
+
return y_data_conts
|
421 |
+
|
422 |
+
|
423 |
+
def get_contact_heatmap(model_contact, img_path, thresh=0.5):
|
424 |
+
contact_heatmap = pose_estimation.infer_single_image(
|
425 |
+
model_contact,
|
426 |
+
img_path,
|
427 |
+
input_img_size=(192, 256),
|
428 |
+
return_kps=False,
|
429 |
+
)
|
430 |
+
contact_heatmap = contact_heatmap.squeeze(0)
|
431 |
+
contact_heatmap_orig = contact_heatmap.copy()
|
432 |
+
|
433 |
+
mi = contact_heatmap.min()
|
434 |
+
ma = contact_heatmap.max()
|
435 |
+
contact_heatmap = (contact_heatmap - mi) / (ma - mi)
|
436 |
+
contact_heatmap_ = ((contact_heatmap > thresh) * 255).astype("uint8")
|
437 |
+
|
438 |
+
contact_heatmap = np.repeat(contact_heatmap[..., None], repeats=3, axis=-1)
|
439 |
+
contact_heatmap = (contact_heatmap * 255).astype("uint8")
|
440 |
+
|
441 |
+
return contact_heatmap_, contact_heatmap, contact_heatmap_orig
|
442 |
+
|
443 |
+
|
444 |
+
def discretize(parametrization, n_bins=100):
|
445 |
+
bins = np.linspace(0, 1, n_bins + 1)
|
446 |
+
inds = np.digitize(parametrization, bins)
|
447 |
+
disc_parametrization = bins[inds - 1]
|
448 |
+
|
449 |
+
return disc_parametrization
|
450 |
+
|
451 |
+
|
452 |
+
def get_mapping_from_params_to_verts(verts, params):
|
453 |
+
mapping = {}
|
454 |
+
for v, t in zip(verts, params):
|
455 |
+
mapping.setdefault(t, []).append(v)
|
456 |
+
|
457 |
+
return mapping
|
458 |
+
|
459 |
+
|
460 |
+
def find_contacts(y_data_conts, keypoints_2d, bone_to_params, thresh=12, step=0.0072246375):
|
461 |
+
n_bins = int(math.ceil(1 / step)) - 1 # mean face's circumradius
|
462 |
+
contact = []
|
463 |
+
contact_2d = []
|
464 |
+
for_mask = []
|
465 |
+
for y_data_cont in y_data_conts:
|
466 |
+
contact_loc = []
|
467 |
+
contact_2d_loc = []
|
468 |
+
buffer = y_data_cont.buffer(thresh)
|
469 |
+
mask_add = False
|
470 |
+
for i, j in pose_estimation.SKELETON:
|
471 |
+
verts, t3d = bone_to_params[(i, j)]
|
472 |
+
if len(verts) == 0:
|
473 |
+
continue
|
474 |
+
|
475 |
+
t3d = discretize(t3d, n_bins=n_bins)
|
476 |
+
t3d_to_verts = get_mapping_from_params_to_verts(verts, t3d)
|
477 |
+
t3d_to_verts_sorted = sorted(t3d_to_verts.items(), key=lambda x: x[0])
|
478 |
+
t3d_sorted_np = np.array([x for x, _ in t3d_to_verts_sorted])
|
479 |
+
|
480 |
+
line = shapely.geometry.LineString([keypoints_2d[i], keypoints_2d[j]])
|
481 |
+
lint = buffer.intersection(line)
|
482 |
+
if len(lint.boundary.geoms) < 2:
|
483 |
+
continue
|
484 |
+
|
485 |
+
t2d_start = line.project(lint.boundary.geoms[0], normalized=True)
|
486 |
+
t2d_end = line.project(lint.boundary.geoms[1], normalized=True)
|
487 |
+
assert t2d_start <= t2d_end
|
488 |
+
|
489 |
+
t2ds = discretize(
|
490 |
+
np.linspace(t2d_start, t2d_end, n_bins + 1), n_bins=n_bins
|
491 |
+
)
|
492 |
+
to_add = False
|
493 |
+
for t2d in t2ds:
|
494 |
+
if t2d < t3d_sorted_np[0] or t2d > t3d_sorted_np[-1]:
|
495 |
+
continue
|
496 |
+
|
497 |
+
t2d_ind = np.searchsorted(t3d_sorted_np, t2d)
|
498 |
+
c = t3d_to_verts_sorted[t2d_ind][1]
|
499 |
+
|
500 |
+
contact_loc.extend(c)
|
501 |
+
to_add = True
|
502 |
+
mask_add = True
|
503 |
+
|
504 |
+
if t2d_ind + 1 < len(t3d_to_verts_sorted):
|
505 |
+
c = t3d_to_verts_sorted[t2d_ind + 1][1]
|
506 |
+
contact_loc.extend(c)
|
507 |
+
|
508 |
+
if t2d_ind > 0:
|
509 |
+
c = t3d_to_verts_sorted[t2d_ind - 1][1]
|
510 |
+
contact_loc.extend(c)
|
511 |
+
|
512 |
+
if to_add:
|
513 |
+
contact_2d_loc.append((i, j, t2d_start + 0.5 * (t2d_end - t2d_start)))
|
514 |
+
|
515 |
+
if mask_add:
|
516 |
+
for_mask.append(buffer.exterior.coords.xy)
|
517 |
+
|
518 |
+
contact_loc = sorted(set(contact_loc))
|
519 |
+
contact_loc = np.array(contact_loc, dtype="int")
|
520 |
+
contact.append(contact_loc)
|
521 |
+
contact_2d.append(contact_2d_loc)
|
522 |
+
|
523 |
+
for_mask = [np.stack((x, y), axis=0).T[:, None].astype("int") for x, y in for_mask]
|
524 |
+
|
525 |
+
return contact, contact_2d, for_mask
|
526 |
+
|
527 |
+
|
528 |
+
def optimize(
|
529 |
+
model_hmr,
|
530 |
+
smpl,
|
531 |
+
selector,
|
532 |
+
input_img,
|
533 |
+
keypoints_2d,
|
534 |
+
optimizer,
|
535 |
+
args,
|
536 |
+
loss_mse=None,
|
537 |
+
loss_parallel=None,
|
538 |
+
c_mse=0.0,
|
539 |
+
c_new_mse=1.0,
|
540 |
+
c_beta=1e-3,
|
541 |
+
sc_crit=None,
|
542 |
+
msc_crit=None,
|
543 |
+
contact=None,
|
544 |
+
n_steps=60,
|
545 |
+
i_ini=0,
|
546 |
+
):
|
547 |
+
mean_zfoot_val = {}
|
548 |
+
with tqdm.trange(n_steps) as pbar:
|
549 |
+
for i in pbar:
|
550 |
+
global_step = i + i_ini
|
551 |
+
optimizer.zero_grad()
|
552 |
+
|
553 |
+
(
|
554 |
+
rotmat_pred,
|
555 |
+
betas_pred,
|
556 |
+
camera_pred,
|
557 |
+
keypoints_3d_pred,
|
558 |
+
z,
|
559 |
+
vertices_2d_pred,
|
560 |
+
smpl_output,
|
561 |
+
(rleg, lleg),
|
562 |
+
joints_2d_orig,
|
563 |
+
) = get_pred_and_data(
|
564 |
+
model_hmr,
|
565 |
+
smpl,
|
566 |
+
selector,
|
567 |
+
input_img,
|
568 |
+
)
|
569 |
+
keypoints_2d_pred = keypoints_3d_pred[:, :2]
|
570 |
+
|
571 |
+
loss = l2 = 0.0
|
572 |
+
if c_mse > 0 and loss_mse is not None:
|
573 |
+
l2 = loss_mse(keypoints_2d_pred, keypoints_2d)
|
574 |
+
loss = loss + c_mse * l2
|
575 |
+
|
576 |
+
vertices_pred = smpl_output.vertices
|
577 |
+
|
578 |
+
lpar = z_loss = loss_sh = 0.0
|
579 |
+
if c_new_mse > 0 and loss_parallel is not None:
|
580 |
+
Ltan, Lcos, Lpar, Lspine, Lgr, Lstraight3d, Lcon2d = loss_parallel(
|
581 |
+
keypoints_3d_pred,
|
582 |
+
keypoints_2d,
|
583 |
+
z,
|
584 |
+
(rleg, lleg),
|
585 |
+
global_step=global_step,
|
586 |
+
)
|
587 |
+
lpar = (
|
588 |
+
Ltan
|
589 |
+
+ c_new_mse * (args.c_f * Lcos + args.c_parallel * Lpar)
|
590 |
+
+ Lspine
|
591 |
+
+ args.c_reg * Lgr
|
592 |
+
+ args.c_reg * Lstraight3d
|
593 |
+
+ args.c_cont2d * Lcon2d
|
594 |
+
)
|
595 |
+
loss = loss + 300 * lpar
|
596 |
+
|
597 |
+
for side in ["left", "right"]:
|
598 |
+
attr = f"{side}_foot_inds"
|
599 |
+
if hasattr(loss_parallel, attr):
|
600 |
+
foot_inds = getattr(loss_parallel, attr)
|
601 |
+
zind = 1
|
602 |
+
if attr not in mean_zfoot_val:
|
603 |
+
with torch.no_grad():
|
604 |
+
mean_zfoot_val[attr] = torch.median(
|
605 |
+
vertices_pred[0, foot_inds, zind], dim=0
|
606 |
+
).values
|
607 |
+
|
608 |
+
loss_foot = (
|
609 |
+
(vertices_pred[0, foot_inds, zind] - mean_zfoot_val[attr])
|
610 |
+
** 2
|
611 |
+
).sum()
|
612 |
+
loss = loss + args.c_reg * loss_foot
|
613 |
+
|
614 |
+
if hasattr(loss_parallel, "silhuette_vertices_inds"):
|
615 |
+
inds = loss_parallel.silhuette_vertices_inds
|
616 |
+
loss_sh = (
|
617 |
+
(vertices_pred[0, inds, 1] - loss_parallel.ground) ** 2
|
618 |
+
).sum()
|
619 |
+
loss = loss + args.c_reg * loss_sh
|
620 |
+
|
621 |
+
lbeta = (betas_pred**2).mean()
|
622 |
+
lcam = ((torch.exp(-camera_pred[0] * 10)) ** 2).mean()
|
623 |
+
loss = loss + c_beta * lbeta + lcam
|
624 |
+
|
625 |
+
lgsc_a = gsc_contact_loss = faces_angle_loss = 0.0
|
626 |
+
if sc_crit is not None:
|
627 |
+
gsc_contact_loss, faces_angle_loss = sc_crit(
|
628 |
+
vertices_pred,
|
629 |
+
)
|
630 |
+
lgsc_a = 1000 * gsc_contact_loss + 0.1 * faces_angle_loss
|
631 |
+
loss = loss + lgsc_a
|
632 |
+
|
633 |
+
msc_loss = 0.0
|
634 |
+
if contact is not None and len(contact) > 0 and msc_crit is not None:
|
635 |
+
if not isinstance(contact, list):
|
636 |
+
contact = [contact]
|
637 |
+
|
638 |
+
for cntct in contact:
|
639 |
+
msc_loss = msc_crit(
|
640 |
+
cntct,
|
641 |
+
vertices_pred,
|
642 |
+
)
|
643 |
+
loss = loss + args.c_msc * msc_loss
|
644 |
+
|
645 |
+
loss.backward()
|
646 |
+
optimizer.step()
|
647 |
+
|
648 |
+
epoch_loss = loss.item()
|
649 |
+
pbar.set_postfix(
|
650 |
+
**{
|
651 |
+
"l": f"{epoch_loss:.3}",
|
652 |
+
"l2": f"{l2:.3}",
|
653 |
+
"par": f"{lpar:.3}",
|
654 |
+
"beta": f"{lbeta:.3}",
|
655 |
+
"cam": f"{lcam:.3}",
|
656 |
+
"z": f"{z_loss:.3}",
|
657 |
+
"gsc_contact": f"{float(gsc_contact_loss):.3}",
|
658 |
+
"faces_angle": f"{float(faces_angle_loss):.3}",
|
659 |
+
"msc": f"{float(msc_loss):.3}",
|
660 |
+
}
|
661 |
+
)
|
662 |
+
|
663 |
+
with torch.no_grad():
|
664 |
+
(
|
665 |
+
rotmat_pred,
|
666 |
+
betas_pred,
|
667 |
+
camera_pred,
|
668 |
+
keypoints_3d_pred,
|
669 |
+
z,
|
670 |
+
vertices_2d_pred,
|
671 |
+
smpl_output,
|
672 |
+
(rleg, lleg),
|
673 |
+
joints_2d_orig,
|
674 |
+
) = get_pred_and_data(
|
675 |
+
model_hmr,
|
676 |
+
smpl,
|
677 |
+
selector,
|
678 |
+
input_img,
|
679 |
+
zero_hands=True,
|
680 |
+
)
|
681 |
+
|
682 |
+
return (
|
683 |
+
rotmat_pred,
|
684 |
+
betas_pred,
|
685 |
+
camera_pred,
|
686 |
+
keypoints_3d_pred,
|
687 |
+
vertices_2d_pred,
|
688 |
+
smpl_output,
|
689 |
+
z,
|
690 |
+
joints_2d_orig,
|
691 |
+
)
|
692 |
+
|
693 |
+
|
694 |
+
def optimize_ft(
|
695 |
+
theta,
|
696 |
+
camera,
|
697 |
+
smpl,
|
698 |
+
selector,
|
699 |
+
keypoints_2d,
|
700 |
+
args,
|
701 |
+
loss_mse=None,
|
702 |
+
loss_parallel=None,
|
703 |
+
c_mse=0.0,
|
704 |
+
c_new_mse=1.0,
|
705 |
+
sc_crit=None,
|
706 |
+
msc_crit=None,
|
707 |
+
contact=None,
|
708 |
+
n_steps=60,
|
709 |
+
i_ini=0,
|
710 |
+
zero_hands=False,
|
711 |
+
fist=None,
|
712 |
+
):
|
713 |
+
mean_zfoot_val = {}
|
714 |
+
|
715 |
+
theta = theta.detach().clone()
|
716 |
+
camera = camera.detach().clone()
|
717 |
+
rotmat_pred = nn.Parameter(theta)
|
718 |
+
camera_pred = nn.Parameter(camera)
|
719 |
+
optimizer = torch.optim.Adam(
|
720 |
+
[
|
721 |
+
rotmat_pred,
|
722 |
+
camera_pred,
|
723 |
+
],
|
724 |
+
lr=1e-3,
|
725 |
+
)
|
726 |
+
global_step = i_ini
|
727 |
+
|
728 |
+
with tqdm.trange(n_steps) as pbar:
|
729 |
+
for i in pbar:
|
730 |
+
global_step = i + i_ini
|
731 |
+
optimizer.zero_grad()
|
732 |
+
|
733 |
+
global_orient = rotmat_pred[:3]
|
734 |
+
body_pose = rotmat_pred[3:]
|
735 |
+
smpl_output = smpl(
|
736 |
+
global_orient=global_orient.unsqueeze(0),
|
737 |
+
body_pose=body_pose.unsqueeze(0),
|
738 |
+
pose2rot=True,
|
739 |
+
)
|
740 |
+
|
741 |
+
z = smpl_output.joints
|
742 |
+
z = z.squeeze(0)
|
743 |
+
|
744 |
+
joints = smpl_output.joints.squeeze(0)
|
745 |
+
joints_2d = project_and_normalize_to_spin(joints, camera_pred)
|
746 |
+
rleg, lleg = project_and_normalize_to_spin_legs(
|
747 |
+
joints, smpl_output.A, camera_pred
|
748 |
+
)
|
749 |
+
joints_2d = joints_2d[selector]
|
750 |
+
z = z[selector]
|
751 |
+
keypoints_3d_pred = joints_2d
|
752 |
+
|
753 |
+
keypoints_2d_pred = keypoints_3d_pred[:, :2]
|
754 |
+
|
755 |
+
lprior = ((rotmat_pred - theta) ** 2).sum() + (
|
756 |
+
(camera_pred - camera) ** 2
|
757 |
+
).sum()
|
758 |
+
loss = lprior
|
759 |
+
|
760 |
+
l2 = 0.0
|
761 |
+
if c_mse > 0 and loss_mse is not None:
|
762 |
+
l2 = loss_mse(keypoints_2d_pred, keypoints_2d)
|
763 |
+
loss = loss + c_mse * l2
|
764 |
+
|
765 |
+
vertices_pred = smpl_output.vertices
|
766 |
+
|
767 |
+
lpar = z_loss = loss_sh = 0.0
|
768 |
+
if c_new_mse > 0 and loss_parallel is not None:
|
769 |
+
Ltan, Lcos, Lpar, Lspine, Lgr, Lstraight3d, Lcon2d = loss_parallel(
|
770 |
+
keypoints_3d_pred,
|
771 |
+
keypoints_2d,
|
772 |
+
z,
|
773 |
+
(rleg, lleg),
|
774 |
+
global_step=global_step,
|
775 |
+
)
|
776 |
+
lpar = (
|
777 |
+
Ltan
|
778 |
+
+ c_new_mse * (args.c_f * Lcos + args.c_parallel * Lpar)
|
779 |
+
+ Lspine
|
780 |
+
+ args.c_reg * Lgr
|
781 |
+
+ args.c_reg * Lstraight3d
|
782 |
+
+ args.c_cont2d * Lcon2d
|
783 |
+
)
|
784 |
+
loss = loss + 300 * lpar
|
785 |
+
|
786 |
+
for side in ["left", "right"]:
|
787 |
+
attr = f"{side}_foot_inds"
|
788 |
+
if hasattr(loss_parallel, attr):
|
789 |
+
foot_inds = getattr(loss_parallel, attr)
|
790 |
+
zind = 1
|
791 |
+
if attr not in mean_zfoot_val:
|
792 |
+
with torch.no_grad():
|
793 |
+
mean_zfoot_val[attr] = torch.median(
|
794 |
+
vertices_pred[0, foot_inds, zind], dim=0
|
795 |
+
).values
|
796 |
+
|
797 |
+
loss_foot = (
|
798 |
+
(vertices_pred[0, foot_inds, zind] - mean_zfoot_val[attr])
|
799 |
+
** 2
|
800 |
+
).sum()
|
801 |
+
loss = loss + args.c_reg * loss_foot
|
802 |
+
|
803 |
+
if hasattr(loss_parallel, "silhuette_vertices_inds"):
|
804 |
+
inds = loss_parallel.silhuette_vertices_inds
|
805 |
+
loss_sh = (
|
806 |
+
(vertices_pred[0, inds, 1] - loss_parallel.ground) ** 2
|
807 |
+
).sum()
|
808 |
+
loss = loss + args.c_reg * loss_sh
|
809 |
+
|
810 |
+
lgsc_a = gsc_contact_loss = faces_angle_loss = 0.0
|
811 |
+
if sc_crit is not None:
|
812 |
+
gsc_contact_loss, faces_angle_loss = sc_crit(vertices_pred)
|
813 |
+
lgsc_a = 1000 * gsc_contact_loss + 0.1 * faces_angle_loss
|
814 |
+
loss = loss + lgsc_a
|
815 |
+
|
816 |
+
msc_loss = 0.0
|
817 |
+
if contact is not None and len(contact) > 0 and msc_crit is not None:
|
818 |
+
if not isinstance(contact, list):
|
819 |
+
contact = [contact]
|
820 |
+
|
821 |
+
for cntct in contact:
|
822 |
+
msc_loss = msc_crit(
|
823 |
+
cntct,
|
824 |
+
vertices_pred,
|
825 |
+
)
|
826 |
+
loss = loss + args.c_msc * msc_loss
|
827 |
+
|
828 |
+
loss.backward()
|
829 |
+
optimizer.step()
|
830 |
+
|
831 |
+
epoch_loss = loss.item()
|
832 |
+
pbar.set_postfix(
|
833 |
+
**{
|
834 |
+
"l": f"{epoch_loss:.3}",
|
835 |
+
"l2": f"{l2:.3}",
|
836 |
+
"par": f"{lpar:.3}",
|
837 |
+
"z": f"{z_loss:.3}",
|
838 |
+
"gsc_contact": f"{float(gsc_contact_loss):.3}",
|
839 |
+
"faces_angle": f"{float(faces_angle_loss):.3}",
|
840 |
+
"msc": f"{float(msc_loss):.3}",
|
841 |
+
}
|
842 |
+
)
|
843 |
+
|
844 |
+
rotmat_pred = rotmat_pred.detach()
|
845 |
+
|
846 |
+
if zero_hands:
|
847 |
+
for i in [20, 21]:
|
848 |
+
rotmat_pred[3 * i : 3 * (i + 1)] = 0
|
849 |
+
|
850 |
+
for i in [12, 15]: # neck, head
|
851 |
+
rotmat_pred[3 * i + 1] = 0 # y
|
852 |
+
|
853 |
+
global_orient = rotmat_pred[:3]
|
854 |
+
body_pose = rotmat_pred[3:]
|
855 |
+
left_hand_pose = None
|
856 |
+
right_hand_pose = None
|
857 |
+
if fist is not None:
|
858 |
+
left_hand_pose = rotmat_pred.new_tensor(fist_pose.LEFT_RELAXED).unsqueeze(0)
|
859 |
+
right_hand_pose = rotmat_pred.new_tensor(fist_pose.RIGHT_RELAXED).unsqueeze(0)
|
860 |
+
for f in fist:
|
861 |
+
pp = fist_pose.INT_TO_FIST[f]
|
862 |
+
if pp is not None:
|
863 |
+
pp = rotmat_pred.new_tensor(pp).unsqueeze(0)
|
864 |
+
|
865 |
+
if f.startswith("lf"):
|
866 |
+
left_hand_pose = pp
|
867 |
+
elif f.startswith("rf"):
|
868 |
+
right_hand_pose = pp
|
869 |
+
elif f.startswith("l"):
|
870 |
+
body_pose[19 * 3 : 19 * 3 + 3] = pp
|
871 |
+
left_hand_pose = None
|
872 |
+
elif f.startswith("r"):
|
873 |
+
body_pose[20 * 3 : 20 * 3 + 3] = pp
|
874 |
+
right_hand_pose = None
|
875 |
+
else:
|
876 |
+
raise RuntimeError(f"No such hand pose: {f}")
|
877 |
+
|
878 |
+
with torch.no_grad():
|
879 |
+
smpl_output = smpl(
|
880 |
+
global_orient=global_orient.unsqueeze(0),
|
881 |
+
body_pose=body_pose.unsqueeze(0),
|
882 |
+
left_hand_pose=left_hand_pose,
|
883 |
+
right_hand_pose=right_hand_pose,
|
884 |
+
pose2rot=True,
|
885 |
+
)
|
886 |
+
|
887 |
+
return rotmat_pred, smpl_output
|
888 |
+
|
889 |
+
|
890 |
+
def create_bone(i, j, keypoints_2d):
|
891 |
+
a = keypoints_2d[i]
|
892 |
+
b = keypoints_2d[j]
|
893 |
+
ab = b - a
|
894 |
+
ab = torch.nn.functional.normalize(ab, dim=0)
|
895 |
+
|
896 |
+
return ab
|
897 |
+
|
898 |
+
|
899 |
+
def is_parallel_to_plane(bone, thresh=21):
|
900 |
+
return abs(bone[0]) > math.cos(math.radians(thresh))
|
901 |
+
|
902 |
+
|
903 |
+
def is_close_to_plane(bone, plane, thresh):
|
904 |
+
dist = abs(bone[0] - plane)
|
905 |
+
|
906 |
+
return dist < thresh
|
907 |
+
|
908 |
+
|
909 |
+
def get_selector():
|
910 |
+
selector = []
|
911 |
+
for kp in pose_estimation.KPS:
|
912 |
+
tmp = spin.JOINT_NAMES.index(PE_KSP_TO_SPIN[kp])
|
913 |
+
selector.append(tmp)
|
914 |
+
|
915 |
+
return selector
|
916 |
+
|
917 |
+
|
918 |
+
def calc_cos(joints_2d, joints_3d):
|
919 |
+
cos = []
|
920 |
+
for i, j in pose_estimation.SKELETON:
|
921 |
+
a = joints_2d[i] - joints_2d[j]
|
922 |
+
a = nn.functional.normalize(a, dim=0)
|
923 |
+
|
924 |
+
b = joints_3d[i] - joints_3d[j]
|
925 |
+
b = nn.functional.normalize(b, dim=0)[:2]
|
926 |
+
|
927 |
+
c = (a * b).sum()
|
928 |
+
cos.append(c)
|
929 |
+
|
930 |
+
cos = torch.stack(cos, dim=0)
|
931 |
+
|
932 |
+
return cos
|
933 |
+
|
934 |
+
|
935 |
+
def get_natural(keypoints_2d, vertices, right_foot_inds, left_foot_inds, loss_parallel, smpl):
|
936 |
+
height_2d = (
|
937 |
+
keypoints_2d.max(dim=0).values[0] - keypoints_2d.min(dim=0).values[0]
|
938 |
+
).item()
|
939 |
+
plane_2d = keypoints_2d.max(dim=0).values[0].item()
|
940 |
+
|
941 |
+
ground_parallel = []
|
942 |
+
parallel_in_3d = []
|
943 |
+
parallel3d_bones = set()
|
944 |
+
|
945 |
+
# parallel chains
|
946 |
+
for i, j, k in [
|
947 |
+
("Right Upper Leg", "Right Leg", "Right Foot"),
|
948 |
+
("Right Leg", "Right Foot", "Right Toe"), # to remove?
|
949 |
+
("Left Upper Leg", "Left Leg", "Left Foot"),
|
950 |
+
("Left Leg", "Left Foot", "Left Toe"), # to remove?
|
951 |
+
("Right Shoulder", "Right Arm", "Right Hand"),
|
952 |
+
("Left Shoulder", "Left Arm", "Left Hand"),
|
953 |
+
# ("Hips", "Spine", "Neck"),
|
954 |
+
# ("Spine", "Neck", "Head"),
|
955 |
+
]:
|
956 |
+
i = pose_estimation.KPS.index(i)
|
957 |
+
j = pose_estimation.KPS.index(j)
|
958 |
+
k = pose_estimation.KPS.index(k)
|
959 |
+
upleg_leg = create_bone(i, j, keypoints_2d)
|
960 |
+
leg_foot = create_bone(j, k, keypoints_2d)
|
961 |
+
|
962 |
+
if is_parallel_to_plane(upleg_leg) and is_parallel_to_plane(leg_foot):
|
963 |
+
if is_close_to_plane(
|
964 |
+
upleg_leg, plane_2d, thresh=0.1 * height_2d
|
965 |
+
) or is_close_to_plane(leg_foot, plane_2d, thresh=0.1 * height_2d):
|
966 |
+
ground_parallel.append(((i, j), 1))
|
967 |
+
ground_parallel.append(((j, k), 1))
|
968 |
+
|
969 |
+
if (upleg_leg * leg_foot).sum() > math.cos(math.radians(21)):
|
970 |
+
parallel_in_3d.append(((i, j), (j, k)))
|
971 |
+
parallel3d_bones.add((i, j))
|
972 |
+
parallel3d_bones.add((j, k))
|
973 |
+
|
974 |
+
# parallel feets
|
975 |
+
for i, j in [
|
976 |
+
("Right Foot", "Right Toe"),
|
977 |
+
("Left Foot", "Left Toe"),
|
978 |
+
]:
|
979 |
+
i = pose_estimation.KPS.index(i)
|
980 |
+
j = pose_estimation.KPS.index(j)
|
981 |
+
if (i, j) in parallel3d_bones:
|
982 |
+
continue
|
983 |
+
|
984 |
+
foot_toe = create_bone(i, j, keypoints_2d)
|
985 |
+
if is_parallel_to_plane(foot_toe, thresh=25):
|
986 |
+
if "Right" in pose_estimation.KPS[i]:
|
987 |
+
loss_parallel.right_foot_inds = right_foot_inds
|
988 |
+
else:
|
989 |
+
loss_parallel.left_foot_inds = left_foot_inds
|
990 |
+
|
991 |
+
loss_parallel.ground_parallel = ground_parallel
|
992 |
+
loss_parallel.parallel_in_3d = parallel_in_3d
|
993 |
+
|
994 |
+
vertices_np = vertices[0].cpu().numpy()
|
995 |
+
if len(ground_parallel) > 0:
|
996 |
+
# Silhuette veritices
|
997 |
+
mesh = trimesh.Trimesh(vertices=vertices_np, faces=smpl.faces, process=False)
|
998 |
+
silhuette_vertices_mask_1 = np.abs(mesh.vertex_normals[..., 2]) < 2e-1
|
999 |
+
height_3d = vertices_np[:, 1].max() - vertices_np[:, 1].min()
|
1000 |
+
plane_3d = vertices_np[:, 1].max()
|
1001 |
+
silhuette_vertices_mask_2 = (
|
1002 |
+
np.abs(vertices_np[:, 1] - plane_3d) < 0.15 * height_3d
|
1003 |
+
)
|
1004 |
+
silhuette_vertices_mask = np.logical_and(
|
1005 |
+
silhuette_vertices_mask_1, silhuette_vertices_mask_2
|
1006 |
+
)
|
1007 |
+
(silhuette_vertices_inds,) = np.where(silhuette_vertices_mask)
|
1008 |
+
if len(silhuette_vertices_inds) > 0:
|
1009 |
+
loss_parallel.silhuette_vertices_inds = silhuette_vertices_inds
|
1010 |
+
loss_parallel.ground = plane_3d
|
1011 |
+
|
1012 |
+
|
1013 |
+
def get_cos(keypoints_3d_pred, use_angle_transf, loss_parallel):
|
1014 |
+
keypoints_2d_pred = keypoints_3d_pred[:, :2]
|
1015 |
+
with torch.no_grad():
|
1016 |
+
cos_r = calc_cos(keypoints_2d_pred, keypoints_3d_pred)
|
1017 |
+
|
1018 |
+
alpha = torch.acos(cos_r)
|
1019 |
+
if use_angle_transf:
|
1020 |
+
leg_inds = [
|
1021 |
+
5,
|
1022 |
+
6, # right leg
|
1023 |
+
7,
|
1024 |
+
8, # left leg
|
1025 |
+
]
|
1026 |
+
foot_inds = [15, 16]
|
1027 |
+
nleg_inds = sorted(
|
1028 |
+
set(range(len(pose_estimation.SKELETON))) - set(leg_inds) - set(foot_inds)
|
1029 |
+
)
|
1030 |
+
alpha[nleg_inds] = alpha[nleg_inds] - alpha[nleg_inds].min()
|
1031 |
+
|
1032 |
+
amli = alpha[leg_inds].min()
|
1033 |
+
leg_inds.extend(foot_inds)
|
1034 |
+
alpha[leg_inds] = alpha[leg_inds] - amli
|
1035 |
+
|
1036 |
+
angles = alpha.detach().cpu().numpy()
|
1037 |
+
angles = hist_cub.cub(
|
1038 |
+
angles / (math.pi / 2),
|
1039 |
+
a=1.2121212121212122,
|
1040 |
+
b=-1.105527638190953,
|
1041 |
+
c=0.787878787878789,
|
1042 |
+
) * (math.pi / 2)
|
1043 |
+
alpha = alpha.new_tensor(angles)
|
1044 |
+
|
1045 |
+
loss_parallel.cos = torch.cos(alpha)
|
1046 |
+
|
1047 |
+
return cos_r
|
1048 |
+
|
1049 |
+
|
1050 |
+
def get_contacts(
|
1051 |
+
args,
|
1052 |
+
sc_module,
|
1053 |
+
y_data_conts,
|
1054 |
+
keypoints_2d,
|
1055 |
+
vertices,
|
1056 |
+
bone_to_params,
|
1057 |
+
loss_parallel,
|
1058 |
+
):
|
1059 |
+
use_contacts = args.use_contacts
|
1060 |
+
use_msc = args.use_msc
|
1061 |
+
c_mse = args.c_mse
|
1062 |
+
|
1063 |
+
if use_contacts:
|
1064 |
+
assert c_mse == 0
|
1065 |
+
contact, contact_2d, _ = find_contacts(
|
1066 |
+
y_data_conts, keypoints_2d, bone_to_params
|
1067 |
+
)
|
1068 |
+
if len(contact_2d) > 0:
|
1069 |
+
loss_parallel.contact_2d = contact_2d
|
1070 |
+
|
1071 |
+
if len(contact) == 0:
|
1072 |
+
_, contact = sc_module.verts_in_contact(vertices, return_idx=True)
|
1073 |
+
contact = contact.cpu().numpy().ravel()
|
1074 |
+
elif use_msc:
|
1075 |
+
_, contact = sc_module.verts_in_contact(vertices, return_idx=True)
|
1076 |
+
contact = contact.cpu().numpy().ravel()
|
1077 |
+
else:
|
1078 |
+
contact = np.array([])
|
1079 |
+
|
1080 |
+
return contact
|
1081 |
+
|
1082 |
+
|
1083 |
+
def save_all(
|
1084 |
+
smpl,
|
1085 |
+
smpl_output,
|
1086 |
+
save_path,
|
1087 |
+
fname,
|
1088 |
+
):
|
1089 |
+
utils.save_mesh_with_colors(
|
1090 |
+
smpl_output.vertices[0].cpu().numpy(),
|
1091 |
+
smpl.faces,
|
1092 |
+
save_path / f"{fname}.ply",
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
|
1096 |
+
def eft_step(
|
1097 |
+
model_hmr,
|
1098 |
+
smpl,
|
1099 |
+
selector,
|
1100 |
+
input_img,
|
1101 |
+
keypoints_2d,
|
1102 |
+
optimizer,
|
1103 |
+
args,
|
1104 |
+
loss_mse,
|
1105 |
+
loss_parallel,
|
1106 |
+
c_beta,
|
1107 |
+
sc_module,
|
1108 |
+
y_data_conts,
|
1109 |
+
bone_to_params,
|
1110 |
+
):
|
1111 |
+
(
|
1112 |
+
_,
|
1113 |
+
_,
|
1114 |
+
_,
|
1115 |
+
keypoints_3d_pred,
|
1116 |
+
_,
|
1117 |
+
smpl_output,
|
1118 |
+
_,
|
1119 |
+
_,
|
1120 |
+
) = optimize(
|
1121 |
+
model_hmr,
|
1122 |
+
smpl,
|
1123 |
+
selector,
|
1124 |
+
input_img,
|
1125 |
+
keypoints_2d,
|
1126 |
+
optimizer,
|
1127 |
+
args,
|
1128 |
+
loss_mse=loss_mse,
|
1129 |
+
loss_parallel=loss_parallel,
|
1130 |
+
c_mse=1,
|
1131 |
+
c_new_mse=0,
|
1132 |
+
c_beta=c_beta,
|
1133 |
+
sc_crit=None,
|
1134 |
+
msc_crit=None,
|
1135 |
+
contact=None,
|
1136 |
+
n_steps=60 + 90,
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
# find contacts
|
1140 |
+
vertices = smpl_output.vertices.detach()
|
1141 |
+
contact = get_contacts(
|
1142 |
+
args,
|
1143 |
+
sc_module,
|
1144 |
+
y_data_conts,
|
1145 |
+
keypoints_2d,
|
1146 |
+
vertices,
|
1147 |
+
bone_to_params,
|
1148 |
+
loss_parallel,
|
1149 |
+
)
|
1150 |
+
|
1151 |
+
return vertices, keypoints_3d_pred, contact
|
1152 |
+
|
1153 |
+
|
1154 |
+
def dc_step(
|
1155 |
+
model_hmr,
|
1156 |
+
smpl,
|
1157 |
+
selector,
|
1158 |
+
input_img,
|
1159 |
+
keypoints_2d,
|
1160 |
+
optimizer,
|
1161 |
+
args,
|
1162 |
+
loss_mse,
|
1163 |
+
loss_parallel,
|
1164 |
+
c_mse,
|
1165 |
+
c_new_mse,
|
1166 |
+
c_beta,
|
1167 |
+
sc_crit,
|
1168 |
+
msc_crit,
|
1169 |
+
contact,
|
1170 |
+
use_contacts,
|
1171 |
+
use_msc,
|
1172 |
+
):
|
1173 |
+
rotmat_pred, *_ = optimize(
|
1174 |
+
model_hmr,
|
1175 |
+
smpl,
|
1176 |
+
selector,
|
1177 |
+
input_img,
|
1178 |
+
keypoints_2d,
|
1179 |
+
optimizer,
|
1180 |
+
args,
|
1181 |
+
loss_mse=loss_mse,
|
1182 |
+
loss_parallel=loss_parallel,
|
1183 |
+
c_mse=c_mse,
|
1184 |
+
c_new_mse=c_new_mse,
|
1185 |
+
c_beta=c_beta,
|
1186 |
+
sc_crit=sc_crit,
|
1187 |
+
msc_crit=msc_crit if use_contacts or use_msc else None,
|
1188 |
+
contact=contact if use_contacts or use_msc else None,
|
1189 |
+
n_steps=60 if c_new_mse > 0 or use_contacts or use_msc else 0, # + 60,,
|
1190 |
+
i_ini=60 + 90,
|
1191 |
+
)
|
1192 |
+
|
1193 |
+
return rotmat_pred
|
1194 |
+
|
1195 |
+
|
1196 |
+
def us_step(
|
1197 |
+
model_hmr,
|
1198 |
+
smpl,
|
1199 |
+
selector,
|
1200 |
+
input_img,
|
1201 |
+
rotmat_pred,
|
1202 |
+
keypoints_2d,
|
1203 |
+
args,
|
1204 |
+
loss_mse,
|
1205 |
+
loss_parallel,
|
1206 |
+
c_mse,
|
1207 |
+
c_new_mse,
|
1208 |
+
sc_crit,
|
1209 |
+
msc_crit,
|
1210 |
+
contact,
|
1211 |
+
use_contacts,
|
1212 |
+
use_msc,
|
1213 |
+
save_path,
|
1214 |
+
):
|
1215 |
+
(_, _, camera_pred_us, _, _, _, smpl_output_us, _, _,) = get_pred_and_data(
|
1216 |
+
model_hmr,
|
1217 |
+
smpl,
|
1218 |
+
selector,
|
1219 |
+
input_img,
|
1220 |
+
use_betas=False,
|
1221 |
+
zero_hands=True,
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
_, smpl_output_us = optimize_ft(
|
1225 |
+
rotmat_pred,
|
1226 |
+
camera_pred_us,
|
1227 |
+
smpl,
|
1228 |
+
selector,
|
1229 |
+
keypoints_2d,
|
1230 |
+
args,
|
1231 |
+
loss_mse=loss_mse,
|
1232 |
+
loss_parallel=loss_parallel,
|
1233 |
+
c_mse=c_mse,
|
1234 |
+
c_new_mse=c_new_mse,
|
1235 |
+
sc_crit=sc_crit,
|
1236 |
+
msc_crit=msc_crit if use_contacts or use_msc else None,
|
1237 |
+
contact=contact if use_contacts or use_msc else None,
|
1238 |
+
n_steps=60 if use_contacts or use_msc else 0, # + 60,
|
1239 |
+
i_ini=60 + 90 + 60,
|
1240 |
+
zero_hands=True,
|
1241 |
+
fist=args.fist,
|
1242 |
+
)
|
1243 |
+
|
1244 |
+
save_all(
|
1245 |
+
smpl,
|
1246 |
+
smpl_output_us,
|
1247 |
+
save_path,
|
1248 |
+
"us",
|
1249 |
+
)
|
1250 |
+
|
1251 |
+
|
1252 |
+
def main():
|
1253 |
+
args = parse_args()
|
1254 |
+
print(args)
|
1255 |
+
|
1256 |
+
# models
|
1257 |
+
model_pose = cv2.dnn.readNetFromONNX(
|
1258 |
+
args.pose_estimation_model_path
|
1259 |
+
) # "hrn_w48_384x288.onnx"
|
1260 |
+
model_contact = cv2.dnn.readNetFromONNX(
|
1261 |
+
args.contact_model_path
|
1262 |
+
) # "contact_hrn_w32_256x192.onnx"
|
1263 |
+
|
1264 |
+
device = (
|
1265 |
+
torch.device(args.device) if torch.cuda.is_available() else torch.device("cpu")
|
1266 |
+
)
|
1267 |
+
model_hmr = spin.hmr(args.smpl_mean_params_path) # "smpl_mean_params.npz"
|
1268 |
+
model_hmr.to(device)
|
1269 |
+
checkpoint = torch.load(
|
1270 |
+
args.spin_model_path, # "spin_model_smplx_eft_18.pt"
|
1271 |
+
map_location="cpu"
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
smpl = spin.SMPLX(
|
1275 |
+
args.smpl_model_dir, # "models/smplx"
|
1276 |
+
batch_size=1,
|
1277 |
+
create_transl=False,
|
1278 |
+
use_pca=False,
|
1279 |
+
flat_hand_mean=args.fist is not None,
|
1280 |
+
)
|
1281 |
+
smpl.to(device)
|
1282 |
+
|
1283 |
+
selector = get_selector()
|
1284 |
+
|
1285 |
+
use_contacts = args.use_contacts
|
1286 |
+
use_msc = args.use_msc
|
1287 |
+
|
1288 |
+
bone_to_params = np.load(args.bone_parametrization_path, allow_pickle=True).item()
|
1289 |
+
foot_inds = np.load(args.foot_inds_path, allow_pickle=True).item()
|
1290 |
+
left_foot_inds = foot_inds["left_foot_inds"]
|
1291 |
+
right_foot_inds = foot_inds["right_foot_inds"]
|
1292 |
+
|
1293 |
+
if use_contacts:
|
1294 |
+
model_type = args.smpl_type
|
1295 |
+
sc_module = selfcontact.SelfContact(
|
1296 |
+
essentials_folder=args.essentials_dir, # "smplify-xmc-essentials"
|
1297 |
+
geothres=0.3,
|
1298 |
+
euclthres=0.02,
|
1299 |
+
test_segments=True,
|
1300 |
+
compute_hd=True,
|
1301 |
+
model_type=model_type,
|
1302 |
+
device=device,
|
1303 |
+
)
|
1304 |
+
sc_module.to(device)
|
1305 |
+
|
1306 |
+
sc_crit = selfcontact.losses.SelfContactLoss(
|
1307 |
+
contact_module=sc_module,
|
1308 |
+
inside_loss_weight=0.5,
|
1309 |
+
outside_loss_weight=0.0,
|
1310 |
+
contact_loss_weight=0.5,
|
1311 |
+
align_faces=True,
|
1312 |
+
use_hd=True,
|
1313 |
+
test_segments=True,
|
1314 |
+
device=device,
|
1315 |
+
model_type=model_type,
|
1316 |
+
)
|
1317 |
+
sc_crit.to(device)
|
1318 |
+
|
1319 |
+
msc_crit = losses.MimickedSelfContactLoss(geodesics_mask=sc_module.geomask)
|
1320 |
+
msc_crit.to(device)
|
1321 |
+
else:
|
1322 |
+
sc_module = None
|
1323 |
+
sc_crit = None
|
1324 |
+
msc_crit = None
|
1325 |
+
|
1326 |
+
loss_mse = losses.MSE([1, 10, 13]) # Neck + Right Upper Leg + Left Upper Leg
|
1327 |
+
|
1328 |
+
ignore = (
|
1329 |
+
(1, 2), # Neck + Right Shoulder
|
1330 |
+
(1, 5), # Neck + Left Shoulder
|
1331 |
+
(9, 10), # Hips + Right Upper Leg
|
1332 |
+
(9, 13), # Hips + Left Upper Leg
|
1333 |
+
)
|
1334 |
+
loss_parallel = losses.Parallel(
|
1335 |
+
skeleton=pose_estimation.SKELETON,
|
1336 |
+
ignore=ignore,
|
1337 |
+
)
|
1338 |
+
|
1339 |
+
c_mse = args.c_mse
|
1340 |
+
c_new_mse = args.c_par
|
1341 |
+
c_beta = 1e-3
|
1342 |
+
|
1343 |
+
if c_mse > 0:
|
1344 |
+
assert c_new_mse == 0
|
1345 |
+
elif c_mse == 0:
|
1346 |
+
assert c_new_mse > 0
|
1347 |
+
|
1348 |
+
root_path = Path(args.save_path)
|
1349 |
+
root_path.mkdir(exist_ok=True, parents=True)
|
1350 |
+
|
1351 |
+
path_to_imgs = Path(args.img_path)
|
1352 |
+
if path_to_imgs.is_dir():
|
1353 |
+
path_to_imgs = path_to_imgs.iterdir()
|
1354 |
+
else:
|
1355 |
+
path_to_imgs = [path_to_imgs]
|
1356 |
+
|
1357 |
+
for img_path in path_to_imgs:
|
1358 |
+
if not any(
|
1359 |
+
img_path.name.lower().endswith(ext) for ext in [".jpg", ".png", ".jpeg"]
|
1360 |
+
):
|
1361 |
+
continue
|
1362 |
+
|
1363 |
+
img_name = img_path.stem
|
1364 |
+
|
1365 |
+
# use 2d keypoints detection
|
1366 |
+
(
|
1367 |
+
img_original,
|
1368 |
+
predicted_keypoints_2d,
|
1369 |
+
_,
|
1370 |
+
_,
|
1371 |
+
) = pose_estimation.infer_single_image(
|
1372 |
+
model_pose,
|
1373 |
+
img_path,
|
1374 |
+
input_img_size=pose_estimation.IMG_SIZE,
|
1375 |
+
return_kps=True,
|
1376 |
+
)
|
1377 |
+
|
1378 |
+
save_path = root_path / img_name
|
1379 |
+
save_path.mkdir(exist_ok=True, parents=True)
|
1380 |
+
|
1381 |
+
img_original = cv2.cvtColor(img_original, cv2.COLOR_BGR2RGB)
|
1382 |
+
img_size_original = img_original.shape[:2]
|
1383 |
+
keypoints_2d, *_ = normalize_keypoints_to_spin(
|
1384 |
+
predicted_keypoints_2d, img_size_original
|
1385 |
+
)
|
1386 |
+
keypoints_2d = torch.from_numpy(keypoints_2d)
|
1387 |
+
keypoints_2d = keypoints_2d.to(device)
|
1388 |
+
|
1389 |
+
(
|
1390 |
+
predicted_contact_heatmap,
|
1391 |
+
predicted_contact_heatmap_raw,
|
1392 |
+
very_hm_raw,
|
1393 |
+
) = get_contact_heatmap(model_contact, img_path)
|
1394 |
+
predicted_contact_heatmap_raw = Image.fromarray(
|
1395 |
+
predicted_contact_heatmap_raw
|
1396 |
+
).resize(img_size_original[::-1])
|
1397 |
+
predicted_contact_heatmap_raw = cv2.resize(very_hm_raw, img_size_original[::-1])
|
1398 |
+
|
1399 |
+
if c_new_mse == 0:
|
1400 |
+
predicted_contact_heatmap_raw = None
|
1401 |
+
|
1402 |
+
y_data_conts = get_vertices_in_heatmap(predicted_contact_heatmap)
|
1403 |
+
|
1404 |
+
model_hmr.load_state_dict(checkpoint["model"], strict=True)
|
1405 |
+
model_hmr.train()
|
1406 |
+
freeze_layers(model_hmr)
|
1407 |
+
|
1408 |
+
_, input_img = spin.process_image(img_path, input_res=spin.constants.IMG_RES)
|
1409 |
+
input_img = input_img.to(device)
|
1410 |
+
|
1411 |
+
optimizer = optim.Adam(
|
1412 |
+
filter(lambda p: p.requires_grad, model_hmr.parameters()),
|
1413 |
+
lr=1e-6,
|
1414 |
+
)
|
1415 |
+
|
1416 |
+
vertices, keypoints_3d_pred, contact = eft_step(
|
1417 |
+
model_hmr,
|
1418 |
+
smpl,
|
1419 |
+
selector,
|
1420 |
+
input_img,
|
1421 |
+
keypoints_2d,
|
1422 |
+
optimizer,
|
1423 |
+
args,
|
1424 |
+
loss_mse,
|
1425 |
+
loss_parallel,
|
1426 |
+
c_beta,
|
1427 |
+
sc_module,
|
1428 |
+
y_data_conts,
|
1429 |
+
bone_to_params,
|
1430 |
+
)
|
1431 |
+
|
1432 |
+
if args.use_natural:
|
1433 |
+
get_natural(
|
1434 |
+
keypoints_2d, vertices, right_foot_inds, left_foot_inds, loss_parallel, smpl,
|
1435 |
+
)
|
1436 |
+
|
1437 |
+
if args.use_cos:
|
1438 |
+
get_cos(keypoints_3d_pred, args.use_angle_transf, loss_parallel)
|
1439 |
+
|
1440 |
+
rotmat_pred = dc_step(
|
1441 |
+
model_hmr,
|
1442 |
+
smpl,
|
1443 |
+
selector,
|
1444 |
+
input_img,
|
1445 |
+
keypoints_2d,
|
1446 |
+
optimizer,
|
1447 |
+
args,
|
1448 |
+
loss_mse,
|
1449 |
+
loss_parallel,
|
1450 |
+
c_mse,
|
1451 |
+
c_new_mse,
|
1452 |
+
c_beta,
|
1453 |
+
sc_crit,
|
1454 |
+
msc_crit,
|
1455 |
+
contact,
|
1456 |
+
use_contacts,
|
1457 |
+
use_msc,
|
1458 |
+
)
|
1459 |
+
|
1460 |
+
us_step(
|
1461 |
+
model_hmr,
|
1462 |
+
smpl,
|
1463 |
+
selector,
|
1464 |
+
input_img,
|
1465 |
+
rotmat_pred,
|
1466 |
+
keypoints_2d,
|
1467 |
+
args,
|
1468 |
+
loss_mse,
|
1469 |
+
loss_parallel,
|
1470 |
+
c_mse,
|
1471 |
+
c_new_mse,
|
1472 |
+
sc_crit,
|
1473 |
+
msc_crit,
|
1474 |
+
contact,
|
1475 |
+
use_contacts,
|
1476 |
+
use_msc,
|
1477 |
+
save_path,
|
1478 |
+
)
|
1479 |
+
|
1480 |
+
|
1481 |
+
if __name__ == "__main__":
|
1482 |
+
main()
|