Spaces:
Running
Running
File size: 4,733 Bytes
02c4dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
from typing import Any, Dict, Tuple, List
from functools import lru_cache
from cv2.typing import Size
import cv2
import numpy
from facefusion.typing import Bbox, Kps, Frame, Matrix, Template, Padding
TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\
{
'arcface_v1': numpy.array(
[
[ 39.7300, 51.1380 ],
[ 72.2700, 51.1380 ],
[ 56.0000, 68.4930 ],
[ 42.4630, 87.0100 ],
[ 69.5370, 87.0100 ]
]),
'arcface_v2': numpy.array(
[
[ 38.2946, 51.6963 ],
[ 73.5318, 51.5014 ],
[ 56.0252, 71.7366 ],
[ 41.5493, 92.3655 ],
[ 70.7299, 92.2041 ]
]),
'ffhq': numpy.array(
[
[ 192.98138, 239.94708 ],
[ 318.90277, 240.1936 ],
[ 256.63416, 314.01935 ],
[ 201.26117, 371.41043 ],
[ 313.08905, 371.15118 ]
])
}
def warp_face(temp_frame : Frame, kps : Kps, template : Template, size : Size) -> Tuple[Frame, Matrix]:
normed_template = TEMPLATES.get(template) * size[1] / size[0]
affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.LMEDS)[0]
crop_frame = cv2.warpAffine(temp_frame, affine_matrix, (size[1], size[1]), borderMode = cv2.BORDER_REPLICATE)
return crop_frame, affine_matrix
def paste_back(temp_frame : Frame, crop_frame: Frame, affine_matrix : Matrix, face_mask_blur : float, face_mask_padding : Padding) -> Frame:
inverse_matrix = cv2.invertAffineTransform(affine_matrix)
temp_frame_size = temp_frame.shape[:2][::-1]
mask_size = tuple(crop_frame.shape[:2])
mask_frame = create_static_mask_frame(mask_size, face_mask_blur, face_mask_padding)
inverse_mask_frame = cv2.warpAffine(mask_frame, inverse_matrix, temp_frame_size).clip(0, 1)
inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE)
paste_frame = temp_frame.copy()
paste_frame[:, :, 0] = inverse_mask_frame * inverse_crop_frame[:, :, 0] + (1 - inverse_mask_frame) * temp_frame[:, :, 0]
paste_frame[:, :, 1] = inverse_mask_frame * inverse_crop_frame[:, :, 1] + (1 - inverse_mask_frame) * temp_frame[:, :, 1]
paste_frame[:, :, 2] = inverse_mask_frame * inverse_crop_frame[:, :, 2] + (1 - inverse_mask_frame) * temp_frame[:, :, 2]
return paste_frame
@lru_cache(maxsize = None)
def create_static_mask_frame(mask_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Frame:
mask_frame = numpy.ones(mask_size, numpy.float32)
blur_amount = int(mask_size[0] * 0.5 * face_mask_blur)
blur_area = max(blur_amount // 2, 1)
mask_frame[:max(blur_area, int(mask_size[1] * face_mask_padding[0] / 100)), :] = 0
mask_frame[-max(blur_area, int(mask_size[1] * face_mask_padding[2] / 100)):, :] = 0
mask_frame[:, :max(blur_area, int(mask_size[0] * face_mask_padding[3] / 100))] = 0
mask_frame[:, -max(blur_area, int(mask_size[0] * face_mask_padding[1] / 100)):] = 0
if blur_amount > 0:
mask_frame = cv2.GaussianBlur(mask_frame, (0, 0), blur_amount * 0.25)
return mask_frame
@lru_cache(maxsize = None)
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]:
y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
anchors = numpy.stack((y, x), axis = -1)
anchors = (anchors * feature_stride).reshape((-1, 2))
anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
return anchors
def distance_to_bbox(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Bbox:
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
bbox = numpy.column_stack([ x1, y1, x2, y2 ])
return bbox
def distance_to_kps(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Kps:
x = points[:, 0::2] + distance[:, 0::2]
y = points[:, 1::2] + distance[:, 1::2]
kps = numpy.stack((x, y), axis = -1)
return kps
def apply_nms(bbox_list : List[Bbox], iou_threshold : float) -> List[int]:
keep_indices = []
dimension_list = numpy.reshape(bbox_list, (-1, 4))
x1 = dimension_list[:, 0]
y1 = dimension_list[:, 1]
x2 = dimension_list[:, 2]
y2 = dimension_list[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
indices = numpy.arange(len(bbox_list))
while indices.size > 0:
index = indices[0]
remain_indices = indices[1:]
keep_indices.append(index)
xx1 = numpy.maximum(x1[index], x1[remain_indices])
yy1 = numpy.maximum(y1[index], y1[remain_indices])
xx2 = numpy.minimum(x2[index], x2[remain_indices])
yy2 = numpy.minimum(y2[index], y2[remain_indices])
width = numpy.maximum(0, xx2 - xx1 + 1)
height = numpy.maximum(0, yy2 - yy1 + 1)
iou = width * height / (areas[index] + areas[remain_indices] - width * height)
indices = indices[numpy.where(iou <= iou_threshold)[0] + 1]
return keep_indices
|