File size: 4,733 Bytes
02c4dcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from typing import Any, Dict, Tuple, List
from functools import lru_cache
from cv2.typing import Size
import cv2
import numpy

from facefusion.typing import Bbox, Kps, Frame, Matrix, Template, Padding

TEMPLATES : Dict[Template, numpy.ndarray[Any, Any]] =\
{
	'arcface_v1': numpy.array(
	[
		[ 39.7300, 51.1380 ],
		[ 72.2700, 51.1380 ],
		[ 56.0000, 68.4930 ],
		[ 42.4630, 87.0100 ],
		[ 69.5370, 87.0100 ]
	]),
	'arcface_v2': numpy.array(
	[
		[ 38.2946, 51.6963 ],
		[ 73.5318, 51.5014 ],
		[ 56.0252, 71.7366 ],
		[ 41.5493, 92.3655 ],
		[ 70.7299, 92.2041 ]
	]),
	'ffhq': numpy.array(
	[
		[ 192.98138, 239.94708 ],
		[ 318.90277, 240.1936 ],
		[ 256.63416, 314.01935 ],
		[ 201.26117, 371.41043 ],
		[ 313.08905, 371.15118 ]
	])
}


def warp_face(temp_frame : Frame, kps : Kps, template : Template, size : Size) -> Tuple[Frame, Matrix]:
	normed_template = TEMPLATES.get(template) * size[1] / size[0]
	affine_matrix = cv2.estimateAffinePartial2D(kps, normed_template, method = cv2.LMEDS)[0]
	crop_frame = cv2.warpAffine(temp_frame, affine_matrix, (size[1], size[1]), borderMode = cv2.BORDER_REPLICATE)
	return crop_frame, affine_matrix


def paste_back(temp_frame : Frame, crop_frame: Frame, affine_matrix : Matrix, face_mask_blur : float, face_mask_padding : Padding) -> Frame:
	inverse_matrix = cv2.invertAffineTransform(affine_matrix)
	temp_frame_size = temp_frame.shape[:2][::-1]
	mask_size = tuple(crop_frame.shape[:2])
	mask_frame = create_static_mask_frame(mask_size, face_mask_blur, face_mask_padding)
	inverse_mask_frame = cv2.warpAffine(mask_frame, inverse_matrix, temp_frame_size).clip(0, 1)
	inverse_crop_frame = cv2.warpAffine(crop_frame, inverse_matrix, temp_frame_size, borderMode = cv2.BORDER_REPLICATE)
	paste_frame = temp_frame.copy()
	paste_frame[:, :, 0] = inverse_mask_frame * inverse_crop_frame[:, :, 0] + (1 - inverse_mask_frame) * temp_frame[:, :, 0]
	paste_frame[:, :, 1] = inverse_mask_frame * inverse_crop_frame[:, :, 1] + (1 - inverse_mask_frame) * temp_frame[:, :, 1]
	paste_frame[:, :, 2] = inverse_mask_frame * inverse_crop_frame[:, :, 2] + (1 - inverse_mask_frame) * temp_frame[:, :, 2]
	return paste_frame


@lru_cache(maxsize = None)
def create_static_mask_frame(mask_size : Size, face_mask_blur : float, face_mask_padding : Padding) -> Frame:
	mask_frame = numpy.ones(mask_size, numpy.float32)
	blur_amount = int(mask_size[0] * 0.5 * face_mask_blur)
	blur_area = max(blur_amount // 2, 1)
	mask_frame[:max(blur_area, int(mask_size[1] * face_mask_padding[0] / 100)), :] = 0
	mask_frame[-max(blur_area, int(mask_size[1] * face_mask_padding[2] / 100)):, :] = 0
	mask_frame[:, :max(blur_area, int(mask_size[0] * face_mask_padding[3] / 100))] = 0
	mask_frame[:, -max(blur_area, int(mask_size[0] * face_mask_padding[1] / 100)):] = 0
	if blur_amount > 0:
		mask_frame = cv2.GaussianBlur(mask_frame, (0, 0), blur_amount * 0.25)
	return mask_frame


@lru_cache(maxsize = None)
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> numpy.ndarray[Any, Any]:
	y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
	anchors = numpy.stack((y, x), axis = -1)
	anchors = (anchors * feature_stride).reshape((-1, 2))
	anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
	return anchors


def distance_to_bbox(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Bbox:
	x1 = points[:, 0] - distance[:, 0]
	y1 = points[:, 1] - distance[:, 1]
	x2 = points[:, 0] + distance[:, 2]
	y2 = points[:, 1] + distance[:, 3]
	bbox = numpy.column_stack([ x1, y1, x2, y2 ])
	return bbox


def distance_to_kps(points : numpy.ndarray[Any, Any], distance : numpy.ndarray[Any, Any]) -> Kps:
	x = points[:, 0::2] + distance[:, 0::2]
	y = points[:, 1::2] + distance[:, 1::2]
	kps = numpy.stack((x, y), axis = -1)
	return kps


def apply_nms(bbox_list : List[Bbox], iou_threshold : float) -> List[int]:
	keep_indices = []
	dimension_list = numpy.reshape(bbox_list, (-1, 4))
	x1 = dimension_list[:, 0]
	y1 = dimension_list[:, 1]
	x2 = dimension_list[:, 2]
	y2 = dimension_list[:, 3]
	areas = (x2 - x1 + 1) * (y2 - y1 + 1)
	indices = numpy.arange(len(bbox_list))
	while indices.size > 0:
		index = indices[0]
		remain_indices = indices[1:]
		keep_indices.append(index)
		xx1 = numpy.maximum(x1[index], x1[remain_indices])
		yy1 = numpy.maximum(y1[index], y1[remain_indices])
		xx2 = numpy.minimum(x2[index], x2[remain_indices])
		yy2 = numpy.minimum(y2[index], y2[remain_indices])
		width = numpy.maximum(0, xx2 - xx1 + 1)
		height = numpy.maximum(0, yy2 - yy1 + 1)
		iou = width * height / (areas[index] + areas[remain_indices] - width * height)
		indices = indices[numpy.where(iou <= iou_threshold)[0] + 1]
	return keep_indices