File size: 5,953 Bytes
0c87db7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "gpuType": "T4",
      "collapsed_sections": [
        "UdQ1VHdI8lCf"
      ],
      "toc_visible": true,
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/C0untFloyd/roop-unleashed/blob/gradio/roop-unleashed.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Colab for roop-unleashed - Gradio version\n",
        "https://github.com/C0untFloyd/roop-unleashed\n"
      ],
      "metadata": {
        "id": "G9BdiCppV6AS"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "Installing & preparing requirements"
      ],
      "metadata": {
        "id": "0ZYRNb0AWLLW"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "t1yPuhdySqCq"
      },
      "outputs": [],
      "source": [
        "!git clone -b gradio --single-branch https://github.com/C0untFloyd/roop-unleashed.git\n",
        "%cd roop-unleashed\n",
        "!pip install pip install -r requirements.txt"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "Running roop-unleashed with GPU Support"
      ],
      "metadata": {
        "id": "u_4JQiSlV9Fi"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!python run.py --execution-provider cuda"
      ],
      "metadata": {
        "id": "Is6U2huqSzLE"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Download generated images folder"
      ],
      "metadata": {
        "id": "UdQ1VHdI8lCf"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import shutil\n",
        "import os\n",
        "from google.colab import files\n",
        "\n",
        "def zip_directory(directory_path, zip_path):\n",
        "    shutil.make_archive(zip_path, 'zip', directory_path)\n",
        "\n",
        "# Set the directory path you want to download\n",
        "directory_path = '/content/roop-unleashed/output'\n",
        "\n",
        "# Set the zip file name\n",
        "zip_filename = 'fake_output.zip'\n",
        "\n",
        "# Zip the directory\n",
        "zip_directory(directory_path, zip_filename)\n",
        "\n",
        "# Download the zip file\n",
        "files.download(zip_filename+'.zip')\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 17
        },
        "id": "oYjWveAmw10X",
        "outputId": "5b4c3650-f951-434a-c650-5525a8a70c1e"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ],
            "application/javascript": [
              "\n",
              "    async function download(id, filename, size) {\n",
              "      if (!google.colab.kernel.accessAllowed) {\n",
              "        return;\n",
              "      }\n",
              "      const div = document.createElement('div');\n",
              "      const label = document.createElement('label');\n",
              "      label.textContent = `Downloading \"${filename}\": `;\n",
              "      div.appendChild(label);\n",
              "      const progress = document.createElement('progress');\n",
              "      progress.max = size;\n",
              "      div.appendChild(progress);\n",
              "      document.body.appendChild(div);\n",
              "\n",
              "      const buffers = [];\n",
              "      let downloaded = 0;\n",
              "\n",
              "      const channel = await google.colab.kernel.comms.open(id);\n",
              "      // Send a message to notify the kernel that we're ready.\n",
              "      channel.send({})\n",
              "\n",
              "      for await (const message of channel.messages) {\n",
              "        // Send a message to notify the kernel that we're ready.\n",
              "        channel.send({})\n",
              "        if (message.buffers) {\n",
              "          for (const buffer of message.buffers) {\n",
              "            buffers.push(buffer);\n",
              "            downloaded += buffer.byteLength;\n",
              "            progress.value = downloaded;\n",
              "          }\n",
              "        }\n",
              "      }\n",
              "      const blob = new Blob(buffers, {type: 'application/binary'});\n",
              "      const a = document.createElement('a');\n",
              "      a.href = window.URL.createObjectURL(blob);\n",
              "      a.download = filename;\n",
              "      div.appendChild(a);\n",
              "      a.click();\n",
              "      div.remove();\n",
              "    }\n",
              "  "
            ]
          },
          "metadata": {}
        },
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<IPython.core.display.Javascript object>"
            ],
            "application/javascript": [
              "download(\"download_789eab11-93d2-4880-adf3-6aceee0cc5f9\", \"fake_output.zip.zip\", 80125)"
            ]
          },
          "metadata": {}
        }
      ]
    }
  ]
}