Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import threading | |
from chain_img_processor import ChainImgProcessor, ChainImgPlugin | |
from torchvision import transforms | |
from clip.clipseg import CLIPDensePredT | |
from numpy import asarray | |
THREAD_LOCK_CLIP = threading.Lock() | |
modname = os.path.basename(__file__)[:-3] # calculating modname | |
model_clip = None | |
# start function | |
def start(core:ChainImgProcessor): | |
manifest = { # plugin settings | |
"name": "Text2Clip", # name | |
"version": "1.0", # version | |
"default_options": { | |
}, | |
"img_processor": { | |
"txt2clip": Text2Clip | |
} | |
} | |
return manifest | |
def start_with_options(core:ChainImgProcessor, manifest:dict): | |
pass | |
class Text2Clip(ChainImgPlugin): | |
def load_clip_model(self): | |
global model_clip | |
if model_clip is None: | |
device = torch.device(super().device) | |
model_clip = CLIPDensePredT(version='ViT-B/16', reduce_dim=64, complex_trans_conv=True) | |
model_clip.eval(); | |
model_clip.load_state_dict(torch.load('models/CLIP/rd64-uni-refined.pth', map_location=torch.device('cpu')), strict=False) | |
model_clip.to(device) | |
def init_plugin(self): | |
self.load_clip_model() | |
def process(self, frame, params:dict): | |
if "face_detected" in params: | |
if not params["face_detected"]: | |
return frame | |
return self.mask_original(params["original_frame"], frame, params["clip_prompt"]) | |
def mask_original(self, img1, img2, keywords): | |
global model_clip | |
source_image_small = cv2.resize(img1, (256,256)) | |
img_mask = np.full((source_image_small.shape[0],source_image_small.shape[1]), 0, dtype=np.float32) | |
mask_border = 1 | |
l = 0 | |
t = 0 | |
r = 1 | |
b = 1 | |
mask_blur = 5 | |
clip_blur = 5 | |
img_mask = cv2.rectangle(img_mask, (mask_border+int(l), mask_border+int(t)), | |
(256 - mask_border-int(r), 256-mask_border-int(b)), (255, 255, 255), -1) | |
img_mask = cv2.GaussianBlur(img_mask, (mask_blur*2+1,mask_blur*2+1), 0) | |
img_mask /= 255 | |
input_image = source_image_small | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
transforms.Resize((256, 256)), | |
]) | |
img = transform(input_image).unsqueeze(0) | |
thresh = 0.5 | |
prompts = keywords.split(',') | |
with THREAD_LOCK_CLIP: | |
with torch.no_grad(): | |
preds = model_clip(img.repeat(len(prompts),1,1,1), prompts)[0] | |
clip_mask = torch.sigmoid(preds[0][0]) | |
for i in range(len(prompts)-1): | |
clip_mask += torch.sigmoid(preds[i+1][0]) | |
clip_mask = clip_mask.data.cpu().numpy() | |
np.clip(clip_mask, 0, 1) | |
clip_mask[clip_mask>thresh] = 1.0 | |
clip_mask[clip_mask<=thresh] = 0.0 | |
kernel = np.ones((5, 5), np.float32) | |
clip_mask = cv2.dilate(clip_mask, kernel, iterations=1) | |
clip_mask = cv2.GaussianBlur(clip_mask, (clip_blur*2+1,clip_blur*2+1), 0) | |
img_mask *= clip_mask | |
img_mask[img_mask<0.0] = 0.0 | |
img_mask = cv2.resize(img_mask, (img2.shape[1], img2.shape[0])) | |
img_mask = np.reshape(img_mask, [img_mask.shape[0],img_mask.shape[1],1]) | |
target = img2.astype(np.float32) | |
result = (1-img_mask) * target | |
result += img_mask * img1.astype(np.float32) | |
return np.uint8(result) | |