Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,9 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
"""
|
3 |
# MANIFESTO ANALYSIS
|
4 |
-
|
5 |
-
## IMPORTING LIBRARIES
|
6 |
"""
|
7 |
|
8 |
-
|
9 |
-
# %%capture
|
10 |
-
# !pip install tika
|
11 |
-
# !pip install clean-text
|
12 |
-
# !pip install gradio
|
13 |
-
|
14 |
-
# Commented out IPython magic to ensure Python compatibility.
|
15 |
-
|
16 |
-
|
17 |
import random
|
18 |
import matplotlib.pyplot as plt
|
19 |
import nltk
|
@@ -21,14 +11,11 @@ from nltk.tokenize import word_tokenize,sent_tokenize
|
|
21 |
from nltk.corpus import stopwords
|
22 |
from nltk.stem.porter import PorterStemmer
|
23 |
from nltk.stem import WordNetLemmatizer
|
24 |
-
#import tika
|
25 |
-
#from tika import parser
|
26 |
from nltk.corpus import stopwords
|
27 |
from nltk.tokenize import word_tokenize
|
28 |
from nltk.probability import FreqDist
|
29 |
from cleantext import clean
|
30 |
import textract
|
31 |
-
|
32 |
import urllib.request
|
33 |
import nltk.corpus
|
34 |
from nltk.text import Text
|
@@ -38,7 +25,6 @@ import sys
|
|
38 |
import pandas as pd
|
39 |
import cv2
|
40 |
import re
|
41 |
-
|
42 |
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
|
43 |
from textblob import TextBlob
|
44 |
from PIL import Image
|
@@ -52,7 +38,6 @@ import unidecode
|
|
52 |
nltk.download('stopwords')
|
53 |
nltk.download('punkt')
|
54 |
nltk.download('wordnet')
|
55 |
-
nltk.download('averaged_perceptron_tagger')
|
56 |
nltk.download('words')
|
57 |
|
58 |
|
@@ -111,10 +96,11 @@ def Preprocess(textParty):
|
|
111 |
|
112 |
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
118 |
def concordance(text_Party,strng):
|
119 |
word_tokens_party = word_tokenize(text_Party)
|
120 |
moby = Text(word_tokens_party)
|
@@ -136,7 +122,7 @@ def normalize(d, target=1.0):
|
|
136 |
|
137 |
def fDistance(text2Party):
|
138 |
'''
|
139 |
-
|
140 |
'''
|
141 |
word_tokens_party = word_tokenize(text2Party) #Tokenizing
|
142 |
fdistance = FreqDist(word_tokens_party).most_common(10)
|
@@ -188,7 +174,6 @@ def getAnalysis(score):
|
|
188 |
else:
|
189 |
return 'Positive'
|
190 |
|
191 |
-
#http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf
|
192 |
url = "http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf"
|
193 |
path_input = "./Bjp_Manifesto_2019.pdf'"
|
194 |
urllib.request.urlretrieve(url, filename=path_input)
|
@@ -216,8 +201,6 @@ def analysis(Manifesto,Search):
|
|
216 |
plt.ylabel('Counts')
|
217 |
plt.figure(figsize=(4,3))
|
218 |
df['Analysis on Polarity'].value_counts().plot(kind ='bar')
|
219 |
-
#plt.savefig('./sentimentAnalysis.png')
|
220 |
-
#plt.clf()
|
221 |
plt.tight_layout()
|
222 |
buf = BytesIO()
|
223 |
plt.savefig(buf)
|
@@ -227,8 +210,6 @@ def analysis(Manifesto,Search):
|
|
227 |
|
228 |
plt.figure(figsize=(4,3))
|
229 |
df['Analysis on Subjectivity'].value_counts().plot(kind ='bar')
|
230 |
-
#plt.savefig('sentimentAnalysis2.png')
|
231 |
-
#plt.clf()
|
232 |
plt.tight_layout()
|
233 |
buf = BytesIO()
|
234 |
plt.savefig(buf)
|
@@ -249,11 +230,6 @@ def analysis(Manifesto,Search):
|
|
249 |
|
250 |
fdist_Party=fDistance(text_Party)
|
251 |
img4=fDistancePlot(text_Party)
|
252 |
-
|
253 |
-
#img1=cv2.imread('/sentimentAnalysis.png')
|
254 |
-
#img2=cv2.imread('/wordcloud.png')
|
255 |
-
#img3=cv2.imread('/wordcloud.png')
|
256 |
-
#img4=cv2.imread('/distplot.png')
|
257 |
|
258 |
searchRes=concordance(text_Party,Search)
|
259 |
searChRes=clean(searchRes)
|
@@ -265,7 +241,6 @@ Search_txt=gr.inputs.Textbox()
|
|
265 |
filePdf = gr.inputs.File()
|
266 |
text = gr.outputs.Textbox(label='SEARCHED OUTPUT')
|
267 |
mfw=gr.outputs.Label(label="Most Relevant Topics")
|
268 |
-
# mfw2=gr.outputs.Image(label="Most Relevant Topics Plot")
|
269 |
plot1=gr.outputs. Image(label='Sentiment Analysis')
|
270 |
plot2=gr.outputs.Image(label='Subjectivity Analysis')
|
271 |
plot3=gr.outputs.Image(label='Word Cloud')
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
"""
|
3 |
# MANIFESTO ANALYSIS
|
|
|
|
|
4 |
"""
|
5 |
|
6 |
+
##IMPORTING LIBRARIES
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import random
|
8 |
import matplotlib.pyplot as plt
|
9 |
import nltk
|
|
|
11 |
from nltk.corpus import stopwords
|
12 |
from nltk.stem.porter import PorterStemmer
|
13 |
from nltk.stem import WordNetLemmatizer
|
|
|
|
|
14 |
from nltk.corpus import stopwords
|
15 |
from nltk.tokenize import word_tokenize
|
16 |
from nltk.probability import FreqDist
|
17 |
from cleantext import clean
|
18 |
import textract
|
|
|
19 |
import urllib.request
|
20 |
import nltk.corpus
|
21 |
from nltk.text import Text
|
|
|
25 |
import pandas as pd
|
26 |
import cv2
|
27 |
import re
|
|
|
28 |
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
|
29 |
from textblob import TextBlob
|
30 |
from PIL import Image
|
|
|
38 |
nltk.download('stopwords')
|
39 |
nltk.download('punkt')
|
40 |
nltk.download('wordnet')
|
|
|
41 |
nltk.download('words')
|
42 |
|
43 |
|
|
|
96 |
|
97 |
|
98 |
|
99 |
+
'''
|
100 |
+
Using Concordance, you can see each time a word is used, along with its
|
101 |
+
immediate context. It can give you a peek into how a word is being used
|
102 |
+
at the sentence level and what words are used with it.
|
103 |
+
'''
|
104 |
def concordance(text_Party,strng):
|
105 |
word_tokens_party = word_tokenize(text_Party)
|
106 |
moby = Text(word_tokens_party)
|
|
|
122 |
|
123 |
def fDistance(text2Party):
|
124 |
'''
|
125 |
+
Most frequent words search
|
126 |
'''
|
127 |
word_tokens_party = word_tokenize(text2Party) #Tokenizing
|
128 |
fdistance = FreqDist(word_tokens_party).most_common(10)
|
|
|
174 |
else:
|
175 |
return 'Positive'
|
176 |
|
|
|
177 |
url = "http://library.bjp.org/jspui/bitstream/123456789/2988/1/BJP-Election-english-2019.pdf"
|
178 |
path_input = "./Bjp_Manifesto_2019.pdf'"
|
179 |
urllib.request.urlretrieve(url, filename=path_input)
|
|
|
201 |
plt.ylabel('Counts')
|
202 |
plt.figure(figsize=(4,3))
|
203 |
df['Analysis on Polarity'].value_counts().plot(kind ='bar')
|
|
|
|
|
204 |
plt.tight_layout()
|
205 |
buf = BytesIO()
|
206 |
plt.savefig(buf)
|
|
|
210 |
|
211 |
plt.figure(figsize=(4,3))
|
212 |
df['Analysis on Subjectivity'].value_counts().plot(kind ='bar')
|
|
|
|
|
213 |
plt.tight_layout()
|
214 |
buf = BytesIO()
|
215 |
plt.savefig(buf)
|
|
|
230 |
|
231 |
fdist_Party=fDistance(text_Party)
|
232 |
img4=fDistancePlot(text_Party)
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
searchRes=concordance(text_Party,Search)
|
235 |
searChRes=clean(searchRes)
|
|
|
241 |
filePdf = gr.inputs.File()
|
242 |
text = gr.outputs.Textbox(label='SEARCHED OUTPUT')
|
243 |
mfw=gr.outputs.Label(label="Most Relevant Topics")
|
|
|
244 |
plot1=gr.outputs. Image(label='Sentiment Analysis')
|
245 |
plot2=gr.outputs.Image(label='Subjectivity Analysis')
|
246 |
plot3=gr.outputs.Image(label='Word Cloud')
|