Spaces:
Sleeping
Sleeping
SaladSlayer00
commited on
Commit
•
cee3072
1
Parent(s):
d7feb62
the APP
Browse files
app.py
CHANGED
@@ -1,34 +1,45 @@
|
|
1 |
-
import
|
|
|
2 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
3 |
from PIL import Image
|
4 |
-
import
|
5 |
-
import cv2
|
6 |
import numpy as np
|
7 |
|
8 |
-
|
|
|
|
|
9 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
10 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
11 |
-
yellow = (0, 255, 255) # BGR
|
12 |
-
font = cv2.FONT_HERSHEY_SIMPLEX
|
13 |
stroke = 2
|
14 |
|
15 |
-
# Convert
|
16 |
-
img =
|
17 |
-
|
18 |
|
19 |
-
# Process the image
|
20 |
-
inputs = processor(images=
|
21 |
outputs = model(**inputs)
|
22 |
-
target_sizes = torch.tensor([
|
23 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
24 |
|
|
|
25 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
26 |
-
cv2.rectangle(
|
27 |
-
cv2.putText(
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
# Create Gradio interface
|
33 |
-
iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(), outputs="image")
|
34 |
-
iface.launch()
|
|
|
1 |
+
import cv2
|
2 |
+
import torch
|
3 |
from transformers import DetrImageProcessor, DetrForObjectDetection
|
4 |
from PIL import Image
|
5 |
+
import gradio as gr
|
|
|
6 |
import numpy as np
|
7 |
|
8 |
+
# Function for DETR object detection
|
9 |
+
def inf(_, webcam_image):
|
10 |
+
# Initialize model and processor
|
11 |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
12 |
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
13 |
+
yellow = (0, 255, 255) # in BGR
|
|
|
14 |
stroke = 2
|
15 |
|
16 |
+
# Convert the webcam image to the correct format
|
17 |
+
img = cv2.cvtColor(webcam_image, cv2.COLOR_BGR2RGB)
|
18 |
+
pil_image = Image.fromarray(img)
|
19 |
|
20 |
+
# Process the image with DETR
|
21 |
+
inputs = processor(images=pil_image, return_tensors="pt")
|
22 |
outputs = model(**inputs)
|
23 |
+
target_sizes = torch.tensor([pil_image.size[::-1]])
|
24 |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
25 |
|
26 |
+
# Draw bounding boxes and labels
|
27 |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
|
28 |
+
cv2.rectangle(webcam_image, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), yellow, stroke)
|
29 |
+
cv2.putText(webcam_image, model.config.id2label[label.item()], (int(box[0]), int(box[1]-10)), cv2.FONT_HERSHEY_SIMPLEX, 1, yellow, stroke, cv2.LINE_AA)
|
30 |
+
|
31 |
+
# Return the processed image
|
32 |
+
return webcam_image
|
33 |
|
34 |
+
# Gradio interface with webcam support
|
35 |
+
demo = gr.Interface(
|
36 |
+
inf,
|
37 |
+
[
|
38 |
+
gr.Markdown("## Real-Time Object Detection"),
|
39 |
+
gr.Image(source="webcam", streaming=True)
|
40 |
+
],
|
41 |
+
"image",
|
42 |
+
live=True
|
43 |
+
)
|
44 |
+
demo.launch(server_name="0.0.0.0", share=True)
|
45 |
|
|
|
|
|
|