import gradio as gr from transformers import DetrImageProcessor, DetrForObjectDetection from PIL import Image import torch import cv2 import numpy as np # Initialize the model and processor processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") def process_frame(webcam_image): # Convert the webcam image from Gradio to the format expected by the model img = cv2.cvtColor(np.array(webcam_image), cv2.COLOR_RGB2BGR) pil_image = Image.fromarray(img) # Process the image inputs = processor(images=pil_image, return_tensors="pt") outputs = model(**inputs) target_sizes = torch.tensor([pil_image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] # Draw bounding boxes and labels on the image for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): box = [int(round(i, 0)) for i in box.tolist()] cv2.rectangle(img, (box[0], box[1]), (box[2], box[3]), (0, 255, 255), 2) label_text = f"{model.config.id2label[label.item()]}: {round(score.item(), 3)}" cv2.putText(img, label_text, (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 1) # Convert back to RGB for Gradio display processed_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return Image.fromarray(processed_image) # Gradio interface demo = gr.Interface( fn=process_frame, inputs=gr.Image(source="webcam", streaming=True), outputs="image", live=True ) demo.launch()