twin_matcher / app.py
SaladSlayer00's picture
Update app.py
03c454c
raw
history blame
2.64 kB
import gradio as gr
from transformers import pipeline
from datasets import load_dataset
import requests
import traceback
import os
dataset = load_dataset("SaladSlayer00/twin_matcher")
image_classifier = pipeline("image-classification", model="SaladSlayer00/twin_matcher")
def fetch_info(celebrity_label):
try:
parts = celebrity_label.split("_")
formatted_label = " ".join([part.capitalize() for part in parts])
api_url = f'https://api.api-ninjas.com/v1/celebrity?name={formatted_label}'
token = os.getenv('TOKEN')
response = requests.get(api_url, headers={'X-Api-Key': token})
if response.status_code == 200:
return response.text
else:
return "Description not available."
except Exception as e:
print(f"Error fetching information: {e}")
traceback.print_exc()
return "Description not available."
# Function to fetch images for the predicted label from the Hugging Face dataset
def fetch_images_for_label(label):
label_data = dataset['train'].filter(lambda example: example['label'] == label)
images = [example['image'] for example in label_data]
return images
# Function to process the image, predict, and fetch images and info
def predict_and_fetch_images(input_image):
try:
# Use the image classifier pipeline
predictions = image_classifier(input_image)
top_prediction = max(predictions, key=lambda x: x['score'])
label, score = top_prediction['label'], top_prediction['score']
# Fetch images for the predicted label
images = fetch_images_for_label(label)
# Fetch information for the predicted label
info = fetch_info(label)
return label, score, images, info, "No Error"
except Exception as e:
print(f"Error during prediction: {e}")
traceback.print_exc()
return "Error during prediction", 0, [], "N/A", str(e)
# Gradio interface
iface = gr.Interface(
fn=predict_and_fetch_images,
inputs=gr.Image(type="pil", label="Upload or Take a Snapshot"),
outputs=[
"text", # Predicted label
"number", # Prediction score
gr.Gallery(label="Lookalike Images"), # Slideshow component for images
"text", # Info/Description
gr.Textbox(type="text", label="Feedback", placeholder="Provide feedback here") # Feedback textbox
],
live=True,
title="Celebrity Lookalike Predictor with Description and Feedback",
description="Take a snapshot or upload an image to see which celebrity you look like!"
)
# Launch the Gradio interface
iface.launch()