SaladSlayer00 commited on
Commit
781cf08
1 Parent(s): d25a172

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -36
app.py CHANGED
@@ -1,48 +1,96 @@
1
  import gradio as gr
 
 
2
  import requests
3
- import io
4
- import os
5
- import tempfile
6
- from PIL import Image
7
  import traceback
 
8
 
9
- token = os.getenv('TOKEN')
10
- # API details
11
- API_URL = "https://api-inference.huggingface.co/models/SaladSlayer00/twin_matcher"
12
- headers = {"Authorization": token}
13
-
14
- # Function to query the API with an image file
15
- def query(filename):
16
- with open(filename, "rb") as f:
17
- data = f.read()
18
- response = requests.post(API_URL, headers=headers, data=data)
19
- response.raise_for_status() # Ensure successful response
20
- return response.json()
21
-
22
- # Function to process the image and predict
23
- def predict(image):
24
  try:
25
- with tempfile.NamedTemporaryFile(delete=False, suffix='.jpeg') as tmp_file:
26
- image.save(tmp_file, format="JPEG")
27
- tmp_file_path = tmp_file.name
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
- predictions = query(tmp_file_path)
30
 
 
 
 
 
31
  top_prediction = max(predictions, key=lambda x: x['score'])
32
- result = (top_prediction['label'], top_prediction['score'])
 
 
 
33
 
34
- os.remove(tmp_file_path)
 
35
 
36
- return result
37
  except Exception as e:
38
- print(f"Exception during prediction: {e}")
39
  traceback.print_exc()
40
- return "Error during prediction", "N/A"
41
-
42
- # Gradio interface
43
- with gr.Interface(fn=predict,
44
- inputs=gr.Image(type="pil"),
45
- outputs=["text", "number"],
46
- title="Celebrity Lookalike Predictor",
47
- description="Take a snapshot to see which celebrity you look like!") as demo:
48
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+ from datasets import load_dataset
4
  import requests
 
 
 
 
5
  import traceback
6
+ import json
7
 
8
+ dataset = load_dataset("SaladSlayer00/twin_matcher")
9
+
10
+ image_classifier = pipeline("image-classification", model="SaladSlayer00/twin_matcher")
11
+
12
+ def format_info(info_json):
 
 
 
 
 
 
 
 
 
 
13
  try:
14
+
15
+ info_data = json.loads(info_json)
16
+
17
+ formatted_info = "<table style='border-collapse: collapse; width: 80%; margin: 20px;'>"
18
+ formatted_info += "<tr style='background-color: #f2f2f2;'>"
19
+ for key in info_data[0].keys():
20
+ formatted_info += f"<th style='border: 1px solid #dddddd; text-align: left; padding: 8px;'><b>{key.capitalize()}</b></th>"
21
+ formatted_info += "</tr>"
22
+
23
+ for entry in info_data:
24
+ formatted_info += "<tr>"
25
+ for value in entry.values():
26
+ formatted_info += f"<td style='border: 1px solid #dddddd; text-align: left; padding: 8px;'>{value}</td>"
27
+ formatted_info += "</tr>"
28
+ formatted_info += "</table>"
29
+ return formatted_info
30
+ except Exception as e:
31
+ print(f"Error formatting info: {e}")
32
+ return "Info not available."
33
+
34
+ def fetch_info(celebrity_label):
35
+ try:
36
+
37
+ parts = celebrity_label.split("_")
38
+ formatted_label = " ".join([part.capitalize() for part in parts])
39
+
40
+
41
+ api_url = f'https://api.api-ninjas.com/v1/celebrity?name={formatted_label}'
42
+
43
+ token = os.environ.get('TOKEN')
44
+ response = requests.get(api_url, headers={'X-Api-Key': token})
45
+ if response.status_code == 200:
46
+ return format_info(response.text)
47
+ else:
48
+ return "Description not available."
49
+ except Exception as e:
50
+ print(f"Error fetching information: {e}")
51
+ traceback.print_exc()
52
+ return "Description not available."
53
+
54
+ def fetch_images_for_label(label):
55
+ label_data = dataset['train'].filter(lambda example: example['label'] == label)
56
+ images = [example['image'] for example in label_data]
57
+ return images
58
 
 
59
 
60
+ def predict_and_fetch_images(input_image):
61
+ try:
62
+
63
+ predictions = image_classifier(input_image)
64
  top_prediction = max(predictions, key=lambda x: x['score'])
65
+ label, score = top_prediction['label'], top_prediction['score']
66
+
67
+
68
+ images = fetch_images_for_label(label)
69
 
70
+
71
+ info = fetch_info(label)
72
 
73
+ return label, score, images, info, "No Error"
74
  except Exception as e:
75
+ print(f"Error during prediction: {e}")
76
  traceback.print_exc()
77
+ return "Error during prediction", 0, [], "N/A", str(e)
78
+
79
+
80
+ iface = gr.Interface(
81
+ fn=predict_and_fetch_images,
82
+ inputs=gr.Image(type="pil", label="Upload or Take a Snapshot"),
83
+ outputs=[
84
+ "text",
85
+ "number",
86
+ gr.Gallery(label="Lookalike Images"),
87
+ "html",
88
+ gr.Textbox(type="text", label="Feedback", placeholder="Provide feedback here") # Feedback textbox
89
+ ],
90
+ live=True,
91
+ title="Celebrity Lookalike Predictor",
92
+ description="Take a snapshot or upload an image to see which celebrity you look like!"
93
+ )
94
+
95
+
96
+ iface.launch()