import gradio as gr from transformers import pipeline from datasets import load_dataset import requests import traceback import json dataset = load_dataset("SaladSlayer00/twin_matcher") image_classifier = pipeline("image-classification", model="SaladSlayer00/twin_matcher") def format_info(info_json): try: info_data = json.loads(info_json) formatted_info = "" formatted_info += "" for key in info_data[0].keys(): formatted_info += f"" formatted_info += "" for entry in info_data: formatted_info += "" for value in entry.values(): formatted_info += f"" formatted_info += "" formatted_info += "
{key.capitalize()}
{value}
" return formatted_info except Exception as e: print(f"Error formatting info: {e}") return "Info not available." def fetch_info(celebrity_label): try: parts = celebrity_label.split("_") formatted_label = " ".join([part.capitalize() for part in parts]) api_url = f'https://api.api-ninjas.com/v1/celebrity?name={formatted_label}' token = os.environ.get('TOKEN') response = requests.get(api_url, headers={'X-Api-Key': token}) if response.status_code == 200: return format_info(response.text) else: return "Description not available." except Exception as e: print(f"Error fetching information: {e}") traceback.print_exc() return "Description not available." def fetch_images_for_label(label): label_data = dataset['train'].filter(lambda example: example['label'] == label) images = [example['image'] for example in label_data] return images def predict_and_fetch_images(input_image): try: predictions = image_classifier(input_image) top_prediction = max(predictions, key=lambda x: x['score']) label, score = top_prediction['label'], top_prediction['score'] images = fetch_images_for_label(label) info = fetch_info(label) return label, score, images, info, "No Error" except Exception as e: print(f"Error during prediction: {e}") traceback.print_exc() return "Error during prediction", 0, [], "N/A", str(e) iface = gr.Interface( fn=predict_and_fetch_images, inputs=gr.Image(type="pil", label="Upload or Take a Snapshot"), outputs=[ "text", "number", gr.Gallery(label="Lookalike Images"), "html", gr.Textbox(type="text", label="Feedback", placeholder="Provide feedback here") # Feedback textbox ], live=True, title="Celebrity Lookalike Predictor", description="Take a snapshot or upload an image to see which celebrity you look like!" ) iface.launch()