|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
seed: 1234 |
|
__set_seed: !!python/object/apply:torch.manual_seed [!ref <seed>] |
|
output_folder: !ref semi_wavlm_large_tunisian_ctc/<seed> |
|
wer_file: !ref <output_folder>/wer.txt |
|
save_folder: !ref <output_folder>/save |
|
train_log: !ref <output_folder>/train_log.txt |
|
|
|
|
|
wav2vec2_folder: !ref <save_folder>/wav2vec2_checkpoint |
|
|
|
|
|
data_folder: /path/to/data |
|
train_tsv_file: !ref <data_folder>/train.tsv |
|
dev_tsv_file: !ref <data_folder>/dev.tsv |
|
test_tsv_file: !ref <data_folder>/test.tsv |
|
accented_letters: True |
|
language: fr |
|
test_csv: |
|
- /path/to/test_data |
|
|
|
skip_prep: True |
|
|
|
use_language_modelling: True |
|
ngram_lm_path: outdomain.arpa |
|
|
|
|
|
|
|
avoid_if_longer_than: 10.0 |
|
avoid_if_shorter_than: 1.2 |
|
|
|
|
|
|
|
number_of_epochs: 12 |
|
lr: 1.0 |
|
lr_wav2vec: 0.0001 |
|
sorting: ascending |
|
auto_mix_prec: False |
|
sample_rate: 16000 |
|
ckpt_interval_minutes: 30 |
|
|
|
|
|
|
|
|
|
batch_size: 10 |
|
test_batch_size: 4 |
|
|
|
dataloader_options: |
|
batch_size: !ref <batch_size> |
|
num_workers: 6 |
|
test_dataloader_options: |
|
batch_size: !ref <test_batch_size> |
|
num_workers: 6 |
|
|
|
|
|
token_type: char |
|
character_coverage: 1.0 |
|
|
|
|
|
|
|
wav2vec_output_dim: 1024 |
|
dnn_neurons: 1024 |
|
freeze_wav2vec: False |
|
freeze_feature_extractor: True |
|
dropout: 0.15 |
|
warmup_steps: 500 |
|
|
|
|
|
output_neurons: 40 |
|
|
|
|
|
|
|
blank_index: 0 |
|
unk_index: 1 |
|
|
|
|
|
|
|
|
|
epoch_counter: !new:speechbrain.utils.epoch_loop.EpochCounter |
|
limit: !ref <number_of_epochs> |
|
|
|
augmentation: !new:speechbrain.lobes.augment.TimeDomainSpecAugment |
|
sample_rate: !ref <sample_rate> |
|
speeds: [95, 100, 105] |
|
|
|
enc: !new:speechbrain.nnet.containers.Sequential |
|
input_shape: [null, null, !ref <wav2vec_output_dim>] |
|
linear1: !name:speechbrain.nnet.linear.Linear |
|
n_neurons: !ref <dnn_neurons> |
|
bias: True |
|
bn1: !name:speechbrain.nnet.normalization.BatchNorm1d |
|
activation: !new:torch.nn.LeakyReLU |
|
drop: !new:torch.nn.Dropout |
|
p: !ref <dropout> |
|
linear2: !name:speechbrain.nnet.linear.Linear |
|
n_neurons: !ref <dnn_neurons> |
|
bias: True |
|
bn2: !name:speechbrain.nnet.normalization.BatchNorm1d |
|
activation2: !new:torch.nn.LeakyReLU |
|
drop2: !new:torch.nn.Dropout |
|
p: !ref <dropout> |
|
linear3: !name:speechbrain.nnet.linear.Linear |
|
n_neurons: !ref <dnn_neurons> |
|
bias: True |
|
bn3: !name:speechbrain.nnet.normalization.BatchNorm1d |
|
activation3: !new:torch.nn.LeakyReLU |
|
|
|
wav2vec2: !new:speechbrain.lobes.models.huggingface_wav2vec.HuggingFaceWav2Vec2 |
|
source: wavlm-large/ |
|
output_norm: False |
|
freeze: !ref <freeze_wav2vec> |
|
freeze_feature_extractor: !ref <freeze_feature_extractor> |
|
save_path: !ref <wav2vec2_folder> |
|
|
|
|
|
ctc_lin: !new:speechbrain.nnet.linear.Linear |
|
input_size: !ref <dnn_neurons> |
|
n_neurons: !ref <output_neurons> |
|
|
|
log_softmax: !new:speechbrain.nnet.activations.Softmax |
|
apply_log: True |
|
|
|
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss |
|
blank_index: !ref <blank_index> |
|
|
|
modules: |
|
wav2vec2: !ref <wav2vec2> |
|
enc: !ref <enc> |
|
ctc_lin: !ref <ctc_lin> |
|
|
|
model: !new:torch.nn.ModuleList |
|
- [!ref <enc>, !ref <ctc_lin>] |
|
|
|
model_opt_class: !name:torch.optim.Adadelta |
|
lr: !ref <lr> |
|
rho: 0.95 |
|
eps: 1.e-8 |
|
|
|
wav2vec_opt_class: !name:torch.optim.Adam |
|
lr: !ref <lr_wav2vec> |
|
|
|
lr_annealing_model: !new:speechbrain.nnet.schedulers.NewBobScheduler |
|
initial_value: !ref <lr> |
|
improvement_threshold: 0.0025 |
|
annealing_factor: 0.8 |
|
patient: 0 |
|
|
|
lr_annealing_wav2vec: !new:speechbrain.nnet.schedulers.NewBobScheduler |
|
initial_value: !ref <lr_wav2vec> |
|
improvement_threshold: 0.0025 |
|
annealing_factor: 0.9 |
|
patient: 0 |
|
|
|
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer |
|
checkpoints_dir: !ref <save_folder> |
|
recoverables: |
|
wav2vec2: !ref <wav2vec2> |
|
model: !ref <model> |
|
scheduler_model: !ref <lr_annealing_model> |
|
scheduler_wav2vec: !ref <lr_annealing_wav2vec> |
|
counter: !ref <epoch_counter> |
|
|
|
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger |
|
save_file: !ref <train_log> |
|
|
|
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats |
|
|
|
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats |
|
split_tokens: True |
|
|