Spaces:
Runtime error
Runtime error
Create app_fully_disabled.py
Browse files- app_fully_disabled.py +285 -0
app_fully_disabled.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
|
3 |
+
import string
|
4 |
+
import gradio as gr
|
5 |
+
import requests
|
6 |
+
from utils import Endpoint, get_token
|
7 |
+
|
8 |
+
|
9 |
+
def encode_image(image):
|
10 |
+
buffered = BytesIO()
|
11 |
+
image.save(buffered, format="JPEG")
|
12 |
+
buffered.seek(0)
|
13 |
+
|
14 |
+
return buffered
|
15 |
+
|
16 |
+
|
17 |
+
def query_chat_api(
|
18 |
+
image, prompt, decoding_method, temperature, len_penalty, repetition_penalty
|
19 |
+
):
|
20 |
+
|
21 |
+
url = endpoint.url
|
22 |
+
url = url + "/api/generate"
|
23 |
+
|
24 |
+
headers = {
|
25 |
+
"User-Agent": "BLIP-2 HuggingFace Space",
|
26 |
+
"Auth-Token": get_token(),
|
27 |
+
}
|
28 |
+
|
29 |
+
data = {
|
30 |
+
"prompt": prompt,
|
31 |
+
"use_nucleus_sampling": decoding_method == "Nucleus sampling",
|
32 |
+
"temperature": temperature,
|
33 |
+
"length_penalty": len_penalty,
|
34 |
+
"repetition_penalty": repetition_penalty,
|
35 |
+
}
|
36 |
+
|
37 |
+
image = encode_image(image)
|
38 |
+
files = {"image": image}
|
39 |
+
|
40 |
+
response = requests.post(url, data=data, files=files, headers=headers)
|
41 |
+
|
42 |
+
if response.status_code == 200:
|
43 |
+
return response.json()
|
44 |
+
else:
|
45 |
+
return "Error: " + response.text
|
46 |
+
|
47 |
+
|
48 |
+
def query_caption_api(
|
49 |
+
image, decoding_method, temperature, len_penalty, repetition_penalty
|
50 |
+
):
|
51 |
+
|
52 |
+
url = endpoint.url
|
53 |
+
url = url + "/api/caption"
|
54 |
+
|
55 |
+
headers = {
|
56 |
+
"User-Agent": "BLIP-2 HuggingFace Space",
|
57 |
+
"Auth-Token": get_token(),
|
58 |
+
}
|
59 |
+
|
60 |
+
data = {
|
61 |
+
"use_nucleus_sampling": decoding_method == "Nucleus sampling",
|
62 |
+
"temperature": temperature,
|
63 |
+
"length_penalty": len_penalty,
|
64 |
+
"repetition_penalty": repetition_penalty,
|
65 |
+
}
|
66 |
+
|
67 |
+
image = encode_image(image)
|
68 |
+
files = {"image": image}
|
69 |
+
|
70 |
+
response = requests.post(url, data=data, files=files, headers=headers)
|
71 |
+
|
72 |
+
if response.status_code == 200:
|
73 |
+
return response.json()
|
74 |
+
else:
|
75 |
+
return "Error: " + response.text
|
76 |
+
|
77 |
+
|
78 |
+
def postprocess_output(output):
|
79 |
+
# if last character is not a punctuation, add a full stop
|
80 |
+
if not output[0][-1] in string.punctuation:
|
81 |
+
output[0] += "."
|
82 |
+
|
83 |
+
return output
|
84 |
+
|
85 |
+
|
86 |
+
def inference_chat(
|
87 |
+
image,
|
88 |
+
text_input,
|
89 |
+
decoding_method,
|
90 |
+
temperature,
|
91 |
+
length_penalty,
|
92 |
+
repetition_penalty,
|
93 |
+
history=[],
|
94 |
+
):
|
95 |
+
text_input = text_input
|
96 |
+
history.append(text_input)
|
97 |
+
|
98 |
+
prompt = " ".join(history)
|
99 |
+
|
100 |
+
output = query_chat_api(
|
101 |
+
image, prompt, decoding_method, temperature, length_penalty, repetition_penalty
|
102 |
+
)
|
103 |
+
output = postprocess_output(output)
|
104 |
+
history += output
|
105 |
+
|
106 |
+
chat = [
|
107 |
+
(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)
|
108 |
+
] # convert to tuples of list
|
109 |
+
|
110 |
+
return {chatbot: chat, state: history}
|
111 |
+
|
112 |
+
|
113 |
+
def inference_caption(
|
114 |
+
image,
|
115 |
+
decoding_method,
|
116 |
+
temperature,
|
117 |
+
length_penalty,
|
118 |
+
repetition_penalty,
|
119 |
+
):
|
120 |
+
output = query_caption_api(
|
121 |
+
image, decoding_method, temperature, length_penalty, repetition_penalty
|
122 |
+
)
|
123 |
+
|
124 |
+
return output[0]
|
125 |
+
|
126 |
+
|
127 |
+
title = """<h1 align="center">BLIP-2</h1>"""
|
128 |
+
description = """Gradio demo for BLIP-2, image-to-text generation from Salesforce Research. To use it, simply upload your image, or click one of the examples to load them.
|
129 |
+
<br> <strong>Disclaimer</strong>: This is a research prototype and is not intended for production use. No data including but not restricted to text and images is collected."""
|
130 |
+
article = """<strong>Paper</strong>: <a href='https://arxiv.org/abs/2301.12597' target='_blank'>BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models</a>
|
131 |
+
<br> <strong>Code</strong>: BLIP2 is now integrated into GitHub repo: <a href='https://github.com/salesforce/LAVIS' target='_blank'>LAVIS: a One-stop Library for Language and Vision</a>
|
132 |
+
<br> <strong>🤗 `transformers` integration</strong>: You can now use `transformers` to use our BLIP-2 models! Check out the <a href='https://huggingface.co/docs/transformers/main/en/model_doc/blip-2' target='_blank'> official docs </a>
|
133 |
+
<p> <strong>Project Page</strong>: <a href='https://github.com/salesforce/LAVIS/tree/main/projects/blip2' target='_blank'> BLIP2 on LAVIS</a>
|
134 |
+
<br> <strong>Description</strong>: Captioning results from <strong>BLIP2_OPT_6.7B</strong>. Chat results from <strong>BLIP2_FlanT5xxl</strong>.
|
135 |
+
|
136 |
+
<p><strong>For safety and ethical considerations, we have disabled image uploading from March 21. 2023. </strong>
|
137 |
+
<p><strong>Please try examples provided below.</strong>
|
138 |
+
"""
|
139 |
+
|
140 |
+
endpoint = Endpoint()
|
141 |
+
|
142 |
+
examples = [
|
143 |
+
["house.png", "How could someone get out of the house?"],
|
144 |
+
["flower.jpg", "Question: What is this flower and where is it's origin? Answer:"],
|
145 |
+
["pizza.jpg", "What are steps to cook it?"],
|
146 |
+
["sunset.jpg", "Here is a romantic message going along the photo:"],
|
147 |
+
["forbidden_city.webp", "In what dynasties was this place built?"],
|
148 |
+
]
|
149 |
+
|
150 |
+
with gr.Blocks(
|
151 |
+
css="""
|
152 |
+
.message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
|
153 |
+
#component-21 > div.wrap.svelte-w6rprc {height: 600px;}
|
154 |
+
"""
|
155 |
+
) as iface:
|
156 |
+
state = gr.State([])
|
157 |
+
|
158 |
+
gr.Markdown(title)
|
159 |
+
gr.Markdown(description)
|
160 |
+
gr.Markdown(article)
|
161 |
+
|
162 |
+
with gr.Row():
|
163 |
+
with gr.Column(scale=1):
|
164 |
+
image_input = gr.Image(type="pil", interactive=False)
|
165 |
+
|
166 |
+
# with gr.Row():
|
167 |
+
sampling = gr.Radio(
|
168 |
+
choices=["Beam search", "Nucleus sampling"],
|
169 |
+
value="Beam search",
|
170 |
+
label="Text Decoding Method",
|
171 |
+
interactive=True,
|
172 |
+
)
|
173 |
+
|
174 |
+
temperature = gr.Slider(
|
175 |
+
minimum=0.5,
|
176 |
+
maximum=1.0,
|
177 |
+
value=1.0,
|
178 |
+
step=0.1,
|
179 |
+
interactive=True,
|
180 |
+
label="Temperature (used with nucleus sampling)",
|
181 |
+
)
|
182 |
+
|
183 |
+
len_penalty = gr.Slider(
|
184 |
+
minimum=-1.0,
|
185 |
+
maximum=2.0,
|
186 |
+
value=1.0,
|
187 |
+
step=0.2,
|
188 |
+
interactive=True,
|
189 |
+
label="Length Penalty (set to larger for longer sequence, used with beam search)",
|
190 |
+
)
|
191 |
+
|
192 |
+
rep_penalty = gr.Slider(
|
193 |
+
minimum=1.0,
|
194 |
+
maximum=5.0,
|
195 |
+
value=1.5,
|
196 |
+
step=0.5,
|
197 |
+
interactive=True,
|
198 |
+
label="Repeat Penalty (larger value prevents repetition)",
|
199 |
+
)
|
200 |
+
|
201 |
+
with gr.Column(scale=1.8):
|
202 |
+
|
203 |
+
with gr.Column():
|
204 |
+
caption_output = gr.Textbox(lines=1, label="Caption Output")
|
205 |
+
caption_button = gr.Button(
|
206 |
+
value="Caption it!", interactive=True, variant="primary"
|
207 |
+
)
|
208 |
+
caption_button.click(
|
209 |
+
inference_caption,
|
210 |
+
[
|
211 |
+
image_input,
|
212 |
+
sampling,
|
213 |
+
temperature,
|
214 |
+
len_penalty,
|
215 |
+
rep_penalty,
|
216 |
+
],
|
217 |
+
[caption_output],
|
218 |
+
)
|
219 |
+
|
220 |
+
gr.Markdown("""Trying prompting your input for chat; e.g. example prompt for QA, \"Question: {} Answer:\" Use proper punctuation (e.g., question mark).""")
|
221 |
+
with gr.Row():
|
222 |
+
with gr.Column(
|
223 |
+
scale=1.5,
|
224 |
+
):
|
225 |
+
chatbot = gr.Chatbot(
|
226 |
+
label="Chat Output (from FlanT5)",
|
227 |
+
)
|
228 |
+
|
229 |
+
# with gr.Row():
|
230 |
+
with gr.Column(scale=1):
|
231 |
+
chat_input = gr.Textbox(lines=1, label="Chat Input")
|
232 |
+
chat_input.submit(
|
233 |
+
inference_chat,
|
234 |
+
[
|
235 |
+
image_input,
|
236 |
+
chat_input,
|
237 |
+
sampling,
|
238 |
+
temperature,
|
239 |
+
len_penalty,
|
240 |
+
rep_penalty,
|
241 |
+
state,
|
242 |
+
],
|
243 |
+
[chatbot, state],
|
244 |
+
)
|
245 |
+
|
246 |
+
with gr.Row():
|
247 |
+
clear_button = gr.Button(value="Clear", interactive=True)
|
248 |
+
clear_button.click(
|
249 |
+
lambda: ("", [], []),
|
250 |
+
[],
|
251 |
+
[chat_input, chatbot, state],
|
252 |
+
queue=False,
|
253 |
+
)
|
254 |
+
|
255 |
+
submit_button = gr.Button(
|
256 |
+
value="Submit", interactive=True, variant="primary"
|
257 |
+
)
|
258 |
+
submit_button.click(
|
259 |
+
inference_chat,
|
260 |
+
[
|
261 |
+
image_input,
|
262 |
+
chat_input,
|
263 |
+
sampling,
|
264 |
+
temperature,
|
265 |
+
len_penalty,
|
266 |
+
rep_penalty,
|
267 |
+
state,
|
268 |
+
],
|
269 |
+
[chatbot, state],
|
270 |
+
)
|
271 |
+
|
272 |
+
image_input.change(
|
273 |
+
lambda: ("", "", []),
|
274 |
+
[],
|
275 |
+
[chatbot, caption_output, state],
|
276 |
+
queue=False,
|
277 |
+
)
|
278 |
+
|
279 |
+
examples = gr.Examples(
|
280 |
+
examples=examples,
|
281 |
+
inputs=[image_input, chat_input],
|
282 |
+
)
|
283 |
+
|
284 |
+
iface.queue(concurrency_count=1, api_open=False, max_size=10)
|
285 |
+
iface.launch(enable_queue=True)
|