Sambhavnoobcoder's picture
final version of app.py
d2dd8e3 verified
raw
history blame
6.1 kB
import google.generativeai as genai
import requests
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from bs4 import BeautifulSoup
import gradio as gr
# Configure Gemini API key
GOOGLE_API_KEY = 'AIzaSyA0yLvySmj8xjMd0sedSgklg1fj0wBDyyw' # Replace with your API key
genai.configure(api_key=GOOGLE_API_KEY)
# Fetch lecture notes and model architectures
def fetch_lecture_notes():
lecture_urls = [
"https://stanford-cs324.github.io/winter2022/lectures/introduction/",
"https://stanford-cs324.github.io/winter2022/lectures/capabilities/",
"https://stanford-cs324.github.io/winter2022/lectures/data/",
"https://stanford-cs324.github.io/winter2022/lectures/modeling/"
]
lecture_texts = []
for url in lecture_urls:
response = requests.get(url)
if response.status_code == 200:
print(f"Fetched content from {url}")
lecture_texts.append((extract_text_from_html(response.text), url))
else:
print(f"Failed to fetch content from {url}, status code: {response.status_code}")
return lecture_texts
def fetch_model_architectures():
url = "https://github.com/Hannibal046/Awesome-LLM#milestone-papers"
response = requests.get(url)
if response.status_code == 200:
print(f"Fetched model architectures, status code: {response.status_code}")
return extract_text_from_html(response.text), url
else:
print(f"Failed to fetch model architectures, status code: {response.status_code}")
return "", url
# Extract text from HTML content
def extract_text_from_html(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text(separator="\n", strip=True)
return text
# Generate embeddings using SentenceTransformers
def create_embeddings(texts, model):
texts_only = [text for text, _ in texts]
embeddings = model.encode(texts_only)
return embeddings
# Initialize FAISS index
def initialize_faiss_index(embeddings):
dimension = embeddings.shape[1] # Assuming all embeddings have the same dimension
index = faiss.IndexFlatL2(dimension)
index.add(embeddings.astype('float32'))
return index
# Handle natural language queries
conversation_history = []
def handle_query(query, faiss_index, embeddings_texts, model):
global conversation_history
query_embedding = model.encode([query]).astype('float32')
# Search FAISS index
_, indices = faiss_index.search(query_embedding, 3) # Retrieve top 3 results
relevant_texts = [embeddings_texts[idx] for idx in indices[0]]
# Combine relevant texts and truncate if necessary
combined_text = "\n".join([text for text, _ in relevant_texts])
max_length = 500 # Adjust as necessary
if len(combined_text) > max_length:
combined_text = combined_text[:max_length] + "..."
# Generate a response using Gemini
try:
response = genai.generate_text(
model="models/text-bison-001",
prompt=f"Based on the following context:\n\n{combined_text}\n\nAnswer the following question: {query}",
max_output_tokens=200
)
generated_text = response.result if response else "No response generated."
except Exception as e:
print(f"Error generating text: {e}")
generated_text = "An error occurred while generating the response."
# Update conversation history
conversation_history.append((query, generated_text))
# Extract sources
sources = [url for _, url in relevant_texts]
return generated_text, sources
def generate_concise_response(prompt, context):
try:
response = genai.generate_text(
model="models/text-bison-001",
prompt=f"{prompt}\n\nContext: {context}\n\nAnswer:",
max_output_tokens=200
)
return response.result if response else "No response generated."
except Exception as e:
print(f"Error generating concise response: {e}")
return "An error occurred while generating the concise response."
# Main function to execute the pipeline
def chatbot(message, history):
lecture_notes = fetch_lecture_notes()
model_architectures = fetch_model_architectures()
all_texts = lecture_notes + [model_architectures]
# Load the SentenceTransformers model
embedding_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
embeddings = create_embeddings(all_texts, embedding_model)
# Initialize FAISS index
faiss_index = initialize_faiss_index(np.array(embeddings))
response, sources = handle_query(message, faiss_index, all_texts, embedding_model)
print("Query:", message)
print("Response:", response)
total_text = response
if sources:
print("Sources:", sources)
relevant_source = "\n".join(sources)
total_text += f"\n\nSources:\n{relevant_source}"
else:
print("Sources: None of the provided sources were used.")
print("----")
# Generate a concise and relevant summary using Gemini
prompt = "Summarize the user queries so far"
user_queries_summary = " ".join([msg[0] for msg in history] + [message])
concise_response = generate_concise_response(prompt, user_queries_summary)
print("Concise Response:")
print(concise_response)
return total_text
# Create the Gradio interface
iface = gr.ChatInterface(
chatbot,
title="LLM Research Assistant",
description="Ask questions about LLM architectures, datasets, and training techniques.",
examples=[
"What are some milestone model architectures in LLMs?",
"Explain the transformer architecture.",
"Tell me about datasets used to train LLMs.",
"How are LLM training datasets cleaned and preprocessed?",
"Summarize the user queries so far"
],
retry_btn="Regenerate",
undo_btn="Undo",
clear_btn="Clear",
)
if __name__ == "__main__":
iface.launch(server_name="0.0.0.0", server_port=7860)