|
import google.generativeai as genai |
|
import requests |
|
import numpy as np |
|
import faiss |
|
from sentence_transformers import SentenceTransformer |
|
from bs4 import BeautifulSoup |
|
import gradio as gr |
|
|
|
|
|
GOOGLE_API_KEY = 'AIzaSyA0yLvySmj8xjMd0sedSgklg1fj0wBDyyw' |
|
genai.configure(api_key=GOOGLE_API_KEY) |
|
|
|
|
|
def fetch_lecture_notes(): |
|
lecture_urls = [ |
|
"https://stanford-cs324.github.io/winter2022/lectures/introduction/", |
|
"https://stanford-cs324.github.io/winter2022/lectures/capabilities/", |
|
"https://stanford-cs324.github.io/winter2022/lectures/data/", |
|
"https://stanford-cs324.github.io/winter2022/lectures/modeling/" |
|
] |
|
lecture_texts = [] |
|
for url in lecture_urls: |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
print(f"Fetched content from {url}") |
|
lecture_texts.append((extract_text_from_html(response.text), url)) |
|
else: |
|
print(f"Failed to fetch content from {url}, status code: {response.status_code}") |
|
return lecture_texts |
|
|
|
def fetch_model_architectures(): |
|
url = "https://github.com/Hannibal046/Awesome-LLM#milestone-papers" |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
print(f"Fetched model architectures, status code: {response.status_code}") |
|
return extract_text_from_html(response.text), url |
|
else: |
|
print(f"Failed to fetch model architectures, status code: {response.status_code}") |
|
return "", url |
|
|
|
|
|
def extract_text_from_html(html_content): |
|
soup = BeautifulSoup(html_content, 'html.parser') |
|
for script in soup(["script", "style"]): |
|
script.extract() |
|
text = soup.get_text(separator="\n", strip=True) |
|
return text |
|
|
|
|
|
def create_embeddings(texts, model): |
|
texts_only = [text for text, _ in texts] |
|
embeddings = model.encode(texts_only) |
|
return embeddings |
|
|
|
|
|
def initialize_faiss_index(embeddings): |
|
dimension = embeddings.shape[1] |
|
index = faiss.IndexFlatL2(dimension) |
|
index.add(embeddings.astype('float32')) |
|
return index |
|
|
|
|
|
conversation_history = [] |
|
|
|
def handle_query(query, faiss_index, embeddings_texts, model): |
|
global conversation_history |
|
|
|
query_embedding = model.encode([query]).astype('float32') |
|
|
|
|
|
_, indices = faiss_index.search(query_embedding, 3) |
|
relevant_texts = [embeddings_texts[idx] for idx in indices[0]] |
|
|
|
|
|
combined_text = "\n".join([text for text, _ in relevant_texts]) |
|
max_length = 500 |
|
if len(combined_text) > max_length: |
|
combined_text = combined_text[:max_length] + "..." |
|
|
|
|
|
try: |
|
response = genai.generate_text( |
|
model="models/text-bison-001", |
|
prompt=f"Based on the following context:\n\n{combined_text}\n\nAnswer the following question: {query}", |
|
max_output_tokens=200 |
|
) |
|
generated_text = response.result if response else "No response generated." |
|
except Exception as e: |
|
print(f"Error generating text: {e}") |
|
generated_text = "An error occurred while generating the response." |
|
|
|
|
|
conversation_history.append((query, generated_text)) |
|
|
|
|
|
sources = [url for _, url in relevant_texts] |
|
|
|
return generated_text, sources |
|
|
|
def generate_concise_response(prompt, context): |
|
try: |
|
response = genai.generate_text( |
|
model="models/text-bison-001", |
|
prompt=f"{prompt}\n\nContext: {context}\n\nAnswer:", |
|
max_output_tokens=200 |
|
) |
|
return response.result if response else "No response generated." |
|
except Exception as e: |
|
print(f"Error generating concise response: {e}") |
|
return "An error occurred while generating the concise response." |
|
|
|
|
|
def chatbot(message, history): |
|
lecture_notes = fetch_lecture_notes() |
|
model_architectures = fetch_model_architectures() |
|
|
|
all_texts = lecture_notes + [model_architectures] |
|
|
|
|
|
embedding_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') |
|
|
|
embeddings = create_embeddings(all_texts, embedding_model) |
|
|
|
|
|
faiss_index = initialize_faiss_index(np.array(embeddings)) |
|
|
|
response, sources = handle_query(message, faiss_index, all_texts, embedding_model) |
|
print("Query:", message) |
|
print("Response:", response) |
|
total_text = response |
|
|
|
if sources: |
|
print("Sources:", sources) |
|
relevant_source = "\n".join(sources) |
|
total_text += f"\n\nSources:\n{relevant_source}" |
|
else: |
|
print("Sources: None of the provided sources were used.") |
|
|
|
print("----") |
|
|
|
|
|
prompt = "Summarize the user queries so far" |
|
user_queries_summary = " ".join([msg[0] for msg in history] + [message]) |
|
concise_response = generate_concise_response(prompt, user_queries_summary) |
|
print("Concise Response:") |
|
print(concise_response) |
|
|
|
return total_text |
|
|
|
|
|
iface = gr.ChatInterface( |
|
chatbot, |
|
title="LLM Research Assistant", |
|
description="Ask questions about LLM architectures, datasets, and training techniques.", |
|
examples=[ |
|
"What are some milestone model architectures in LLMs?", |
|
"Explain the transformer architecture.", |
|
"Tell me about datasets used to train LLMs.", |
|
"How are LLM training datasets cleaned and preprocessed?", |
|
"Summarize the user queries so far" |
|
], |
|
retry_btn="Regenerate", |
|
undo_btn="Undo", |
|
clear_btn="Clear", |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch(server_name="0.0.0.0", server_port=7860) |