Spaces:
Runtime error
Runtime error
File size: 4,040 Bytes
0b15f14 140793a 1997cd5 0b15f14 140793a aac3374 73660ac aac3374 7d6878a 140793a e1eb2b8 140793a e1eb2b8 140793a 61d12d7 140793a 2147ae4 61d12d7 934db30 140793a 2147ae4 83a6345 140793a c3acc2f 140793a 83a6345 140793a c3acc2f a68ea86 aac3374 5ec054f aac3374 dddc929 aac3374 61d12d7 07466ed 0caf6b4 b525961 6ae1c70 b525961 07466ed 706d17f fec6802 140793a f441bd4 140793a f441bd4 140793a 0b15f14 140793a 0b15f14 140793a 53aa7e6 140793a 161e125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import os
import gradio as gr
from huggingface_hub import InferenceClient
HF_TOKEN = os.environ.get("HF_TOKEN", None)
model2api = [
"tiiuae/falcon-180B-chat",
"meta-llama/Llama-2-70b-chat-hf",
"codellama/CodeLlama-34b-Instruct-hf",
"victor/CodeLlama-34b-Instruct-hf",
"timdettmers/guanaco-33b-merged",
]
STOP_SEQUENCES = ["User:", "###", "<|endoftext|>", "</s>"]
EXAMPLES = [
["Hey LLAMA! Any recommendations for my holidays in Abu Dhabi?"],
["What's the Everett interpretation of quantum mechanics?"],
["Give me a list of the top 10 dive sites you would recommend around the world."],
["Can you tell me more about deep-water soloing?"],
["Can you write a short tweet about the release of our latest AI model, LLAMA LLM?"]
]
def format_prompt(message, history, system_prompt, bot_name):
prompt = ""
if system_prompt:
prompt += f"System: {system_prompt}\n"
for user_prompt, bot_response in history:
prompt += f"User: {user_prompt}\n"
prompt += f"{bot_name}: {bot_response}\n"
prompt += f"""User: {message}\n{bot_name}:"""
return prompt
seed = 42
def generate(
prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
global seed
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
stop_sequences=STOP_SEQUENCES,
do_sample=True,
seed=seed,
)
seed = seed + 1
client = InferenceClient()
clientList = (client.list_deployed_models('text-generation-inference'))['text-generation']
for i in range(0, len(model2api)):
model = model2api[i]
if model in clientList:
client = InferenceClient(model, token=HF_TOKEN)
print(f"Choosen model: {model}")
break
if model == model2api[0]:
bot_name = "Falcon"
else:
bot_name = "Assistant"
formatted_prompt = format_prompt(prompt, history, system_prompt, bot_name)
try:
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
for stop_str in STOP_SEQUENCES:
if output.endswith(stop_str):
output = output[:-len(stop_str)]
# output = output.rstrip()
yield output
yield output
except Exception as e:
raise gr.Error(f"Client error while generating: {e}")
return output
additional_inputs=[
gr.Textbox("", label="Optional system prompt"),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=3000,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.01,
maximum=0.99,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
with gr.Blocks() as demo:
gr.ChatInterface(
generate,
examples=EXAMPLES,
additional_inputs=additional_inputs,
)
#demo.queue(concurrency_count=100, api_open=False).launch(show_api=False)
demo.queue(concurrency_count=100).launch()
|