import os import gradio as gr from huggingface_hub import InferenceClient HF_TOKEN = os.environ.get("HF_TOKEN", None) model2api = [ "tiiuae/falcon-180B-chat", "meta-llama/Llama-2-70b-chat-hf", "codellama/CodeLlama-34b-Instruct-hf", "victor/CodeLlama-34b-Instruct-hf", "timdettmers/guanaco-33b-merged", ] STOP_SEQUENCES = ["User:", "###", "<|endoftext|>", ""] EXAMPLES = [ ["Hey LLAMA! Any recommendations for my holidays in Abu Dhabi?"], ["What's the Everett interpretation of quantum mechanics?"], ["Give me a list of the top 10 dive sites you would recommend around the world."], ["Can you tell me more about deep-water soloing?"], ["Can you write a short tweet about the release of our latest AI model, LLAMA LLM?"] ] def format_prompt(message, history, system_prompt, bot_name): prompt = "" if system_prompt: prompt += f"System: {system_prompt}\n" for user_prompt, bot_response in history: prompt += f"User: {user_prompt}\n" prompt += f"{bot_name}: {bot_response}\n" prompt += f"""User: {message}\n{bot_name}:""" return prompt seed = 42 def generate( prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) global seed generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, stop_sequences=STOP_SEQUENCES, do_sample=True, seed=seed, ) seed = seed + 1 client = InferenceClient() clientList = (client.list_deployed_models('text-generation-inference'))['text-generation'] for i in range(0, len(model2api)): model = model2api[i] if model in clientList: client = InferenceClient(model, token=HF_TOKEN) print(f"Choosen model: {model}") break if model == model2api[0]: bot_name = "Falcon" else: bot_name = "Assistant" formatted_prompt = format_prompt(prompt, history, system_prompt, bot_name) try: stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text for stop_str in STOP_SEQUENCES: if output.endswith(stop_str): output = output[:-len(stop_str)] # output = output.rstrip() yield output yield output except Exception as e: raise gr.Error(f"Client error while generating: {e}") return output additional_inputs=[ gr.Textbox("", label="Optional system prompt"), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=3000, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] with gr.Blocks() as demo: gr.ChatInterface( generate, examples=EXAMPLES, additional_inputs=additional_inputs, ) #demo.queue(concurrency_count=100, api_open=False).launch(show_api=False) demo.queue(concurrency_count=100).launch()