SameerArz's picture
Create app.py
f543785 verified
raw
history blame
4.65 kB
import streamlit as st
import joblib
model_path = 'Best_model.joblib'
loaded_model = joblib.load(model_path)
# Preprocess input function
def preprocess_input(input_data):
age = input_data['age']
bmi = input_data.get('bmi', None)
height = input_data.get('height', None)
weight = input_data.get('weight', None)
children = input_data['children']
# Convert height to meters based on the selected unit
height_unit = input_data.get('height_unit', 'meters')
if height is not None and height_unit != 'meters':
if height_unit == 'centimeters':
height /= 100
elif height_unit == 'feet':
height *= 0.3048 # 1 foot = 0.3048 meters
# Calculate BMI if height and weight are provided and height is not zero
if height is not None and height != 0 and weight is not None:
bmi = weight / (height ** 2)
# Convert sex to binary representation
sex_0 = 1 if input_data['sex'] == 'female' else 0
sex_1 = 1 - sex_0
# Convert smoker to binary representation
smoker_0 = 1 if input_data['smoker'] == 'no' else 0
smoker_1 = 1 - smoker_0
# Map region name to numerical representation
region_mapping = {'southeast': 1, 'southwest': 2, 'northwest': 3, 'northeast': 4}
region = region_mapping.get(input_data['region'], 0)
# Create binary representations for each region
region_1 = 1 if region == 1 else 0
region_2 = 1 if region == 2 else 0
region_3 = 1 if region == 3 else 0
region_4 = 1 if region == 4 else 0
# Create the formatted input list with 11 features
formatted_input = [age, bmi, children, sex_0, sex_1, region_1, region_2, region_3, region_4, smoker_0, smoker_1]
return formatted_input
# Input page
def input_page():
st.title('HealthInsure Claim Amount Predictor')
st.write('Please fill in the following details:')
age = None
height = None
weight = None
age_warning = ''
height_warning = ''
weight_warning = ''
age = st.number_input('Age', min_value=0, step=1, value=age)
if age == 0:
age_warning = 'Please enter correct age.'
st.warning(age_warning)
sex = st.radio('Sex', ('male', 'female'))
# Side-by-side input for height unit and height
col1, col2 = st.columns(2)
with col1:
height_unit = st.selectbox('Height Unit', ('meters', 'centimeters', 'feet'))
with col2:
height = st.number_input('Height', min_value=0.0, step=0.01, value=height)
if height == 0:
height_warning = 'Please enter correct height.'
st.warning(height_warning)
weight = st.number_input('Weight (in kg)', min_value=0.0, step=0.1, value=weight)
if weight == 0:
weight_warning = 'Please enter correct weight.'
st.warning(weight_warning)
# Calculate BMI immediately after entering height and weight if height is not zero
bmi = None
if height is not None and height != 0.0 and weight is not None:
# Convert height based on selected height unit
if height_unit != 'meters':
if height_unit == 'centimeters':
height /= 100
elif height_unit == 'feet':
height *= 0.3048 # 1 foot = 0.3048 meters
# Calculate BMI
bmi = weight / (height ** 2)
st.write(f'BMI: {bmi:.2f}')
children = st.number_input('Number of Children', min_value=0, step=1)
smoker = st.selectbox('Smoker', ('yes', 'no'))
region = st.selectbox('Region', ('southeast', 'southwest', 'northwest', 'northeast'))
if st.button('Predict'):
if age_warning or height_warning or weight_warning:
st.error('Please correct the following input errors:')
if age_warning:
st.error(age_warning)
if height_warning:
st.error(height_warning)
if weight_warning:
st.error(weight_warning)
else:
input_data = {'age': age, 'sex': sex, 'height': height, 'weight': weight, 'children': children,
'smoker': smoker, 'region': region, 'bmi': bmi, 'height_unit': height_unit}
processed_input = preprocess_input(input_data)
charges = loaded_model.predict([processed_input])[0]
st.write('## Estimated Claim Amount')
st.write(f'Estimated Claim Amount: {charges:.2f}', unsafe_allow_html=True)
st.write('The following value is estimated based on historical data and predictive modeling techniques and may not represent the exact amount.')
# Main function
def main():
input_page()
if __name__ == '__main__':
main()