import streamlit as st import joblib model_path = 'Best_model.joblib' loaded_model = joblib.load(model_path) # Preprocess input function def preprocess_input(input_data): age = input_data['age'] bmi = input_data.get('bmi', None) height = input_data.get('height', None) weight = input_data.get('weight', None) children = input_data['children'] # Convert height to meters based on the selected unit height_unit = input_data.get('height_unit', 'meters') if height is not None and height_unit != 'meters': if height_unit == 'centimeters': height /= 100 elif height_unit == 'feet': height *= 0.3048 # 1 foot = 0.3048 meters # Calculate BMI if height and weight are provided and height is not zero if height is not None and height != 0 and weight is not None: bmi = weight / (height ** 2) # Convert sex to binary representation sex_0 = 1 if input_data['sex'] == 'female' else 0 sex_1 = 1 - sex_0 # Convert smoker to binary representation smoker_0 = 1 if input_data['smoker'] == 'no' else 0 smoker_1 = 1 - smoker_0 # Map region name to numerical representation region_mapping = {'southeast': 1, 'southwest': 2, 'northwest': 3, 'northeast': 4} region = region_mapping.get(input_data['region'], 0) # Create binary representations for each region region_1 = 1 if region == 1 else 0 region_2 = 1 if region == 2 else 0 region_3 = 1 if region == 3 else 0 region_4 = 1 if region == 4 else 0 # Create the formatted input list with 11 features formatted_input = [age, bmi, children, sex_0, sex_1, region_1, region_2, region_3, region_4, smoker_0, smoker_1] return formatted_input # Input page def input_page(): st.title('HealthInsure Claim Amount Predictor') st.write('Please fill in the following details:') age = None height = None weight = None age_warning = '' height_warning = '' weight_warning = '' age = st.number_input('Age', min_value=0, step=1, value=age) if age == 0: age_warning = 'Please enter correct age.' st.warning(age_warning) sex = st.radio('Sex', ('male', 'female')) # Side-by-side input for height unit and height col1, col2 = st.columns(2) with col1: height_unit = st.selectbox('Height Unit', ('meters', 'centimeters', 'feet')) with col2: height = st.number_input('Height', min_value=0.0, step=0.01, value=height) if height == 0: height_warning = 'Please enter correct height.' st.warning(height_warning) weight = st.number_input('Weight (in kg)', min_value=0.0, step=0.1, value=weight) if weight == 0: weight_warning = 'Please enter correct weight.' st.warning(weight_warning) # Calculate BMI immediately after entering height and weight if height is not zero bmi = None if height is not None and height != 0.0 and weight is not None: # Convert height based on selected height unit if height_unit != 'meters': if height_unit == 'centimeters': height /= 100 elif height_unit == 'feet': height *= 0.3048 # 1 foot = 0.3048 meters # Calculate BMI bmi = weight / (height ** 2) st.write(f'BMI: {bmi:.2f}') children = st.number_input('Number of Children', min_value=0, step=1) smoker = st.selectbox('Smoker', ('yes', 'no')) region = st.selectbox('Region', ('southeast', 'southwest', 'northwest', 'northeast')) if st.button('Predict'): if age_warning or height_warning or weight_warning: st.error('Please correct the following input errors:') if age_warning: st.error(age_warning) if height_warning: st.error(height_warning) if weight_warning: st.error(weight_warning) else: input_data = {'age': age, 'sex': sex, 'height': height, 'weight': weight, 'children': children, 'smoker': smoker, 'region': region, 'bmi': bmi, 'height_unit': height_unit} processed_input = preprocess_input(input_data) charges = loaded_model.predict([processed_input])[0] st.write('## Estimated Claim Amount') st.write(f'Estimated Claim Amount: {charges:.2f}', unsafe_allow_html=True) st.write('The following value is estimated based on historical data and predictive modeling techniques and may not represent the exact amount.') # Main function def main(): input_page() if __name__ == '__main__': main()