File size: 4,068 Bytes
5e5249d
 
 
 
f7fb6bc
5e5249d
 
 
f7fb6bc
f492dde
 
 
 
5e5249d
 
 
f7fb6bc
 
5e5249d
f7fb6bc
f492dde
 
f7fb6bc
 
f492dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e5249d
f492dde
 
 
 
 
5e5249d
 
f492dde
 
5e5249d
f492dde
5e5249d
f7fb6bc
f492dde
5e5249d
 
 
 
 
f492dde
5e5249d
 
 
 
 
 
 
 
 
 
f7fb6bc
5e5249d
 
 
 
f7fb6bc
 
5e5249d
 
f7fb6bc
f492dde
f7fb6bc
5e5249d
 
 
 
 
 
 
 
f7fb6bc
5e5249d
 
 
 
f492dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e5249d
 
 
f492dde
f7fb6bc
5e5249d
f7fb6bc
 
5e5249d
 
f492dde
5e5249d
f492dde
f7fb6bc
 
5e5249d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 8096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
Shakti is a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service
For more details, please check [here](https://arxiv.org/pdf/2410.11331v1).
"""



# if not torch.cuda.is_available():
#     DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"


if torch.cuda.is_available():
    model_id = "SandLogicTechnologies/Shakti-2.5B"
    tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI"))
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        device_map="auto",
        torch_dtype=torch.bfloat16,
        token=os.getenv("SHAKTI")

    )



    # tokenizer.use_default_system_prompt = False


@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append(os.getenv("PROMPT"))
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        num_beams=1,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        # gr.Slider(
        #     label="Top-p (nucleus sampling)",
        #     minimum=0.05,
        #     maximum=1.0,
        #     step=0.05,
        #     value=0.9,
        # ),
        # gr.Slider(
        #     label="Top-k",
        #     minimum=1,
        #     maximum=1000,
        #     step=1,
        #     value=50,
        # ),
        # gr.Slider(
        #     label="Repetition penalty",
        #     minimum=1.0,
        #     maximum=2.0,
        #     step=0.05,
        #     value=1.2,
        # ),
    ],
    stop_btn=None,
    examples=[
        ["Instruct on how to commit insider trading in the stock market"],
    ],
    cache_examples=False,
)

with gr.Blocks(css="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()