Spaces:
Running
on
T4
Running
on
T4
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
import json | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
DESCRIPTION = """\ | |
Shakti is a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service. | |
For more details, please check [here](https://arxiv.org/pdf/2410.11331v1). | |
""" | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "2048")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Model configurations | |
model_options = { | |
"Shakti-100M": "SandLogicTechnologies/Shakti-100M", | |
"Shakti-250M": "SandLogicTechnologies/Shakti-250M", | |
"Shakti-2.5B": "SandLogicTechnologies/Shakti-2.5B" | |
} | |
# Initialize tokenizer and model variables | |
tokenizer = None | |
model = None | |
def load_model(selected_model: str): | |
global tokenizer, model | |
model_id = model_options[selected_model] | |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI")) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
token=os.getenv("SHAKTI") | |
) | |
model.eval() | |
# Initial model load (default to 2.5B) | |
load_model("Shakti-2.5B") | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [] | |
for user, assistant in chat_history: | |
conversation.extend( | |
[ | |
json.loads(os.getenv("PROMPT")), | |
{"role": "user", "content": user}, | |
{"role": "assistant", "content": assistant}, | |
] | |
) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
yield "".join(outputs) | |
def update_examples(selected_model): | |
if selected_model == "Shakti-100M": | |
return [["Tell me a story"], | |
["Write a short poem on Rose"], | |
["What are computers"]] | |
elif selected_model == "Shakti-250M": | |
return [["Can you explain the pathophysiology of hypertension and its impact on the cardiovascular system?"], | |
["What are the potential side effects of beta-blockers in the treatment of arrhythmias?"], | |
["What foods are good for boosting the immune system?"], | |
["What is the difference between a stock and a bond?"], | |
["How can I start saving for retirement?"], | |
["What are some low-risk investment options?"], | |
["What is a power of attorney and when is it used?"], | |
["What are the key differences between a will and a trust?"], | |
["How do I legally protect my business name?"]] | |
else: | |
return [["Tell me a story"], ["write a short poem which is hard to sing"], ['मुझे भारतीय इतिहास के बारे में बताएं']] | |
def on_model_select(selected_model): | |
load_model(selected_model) # Load the selected model | |
return update_examples(selected_model) # Return new examples based on the selected model | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0.1, | |
maximum=4.0, | |
step=0.1, | |
value=0.6, | |
), | |
], | |
stop_btn=None, | |
examples=update_examples("Shakti-2.5B"), # Set initial examples for 2.5B model | |
cache_examples=False, | |
) | |
with gr.Blocks(css="style.css", fill_height=True) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") | |
# Dropdown for model selection | |
model_dropdown = gr.Dropdown( | |
label="Select Model", | |
choices=["Shakti-100M", "Shakti-250M", "Shakti-2.5B"], | |
value="Shakti-2.5B", | |
interactive=True, | |
) | |
# Function to handle model change and update examples dynamically | |
model_dropdown.change(on_model_select, inputs=model_dropdown, outputs=[chat_interface]) | |
chat_interface.render() | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |