Spaces:
Running
on
T4
Running
on
T4
SandLogicTechnologies
commited on
Commit
•
7e59f2d
1
Parent(s):
2e33ec7
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,17 @@
|
|
1 |
import os
|
2 |
from threading import Thread
|
3 |
from typing import Iterator
|
|
|
4 |
import gradio as gr
|
5 |
import spaces
|
6 |
import torch
|
7 |
import json
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
9 |
|
10 |
-
DESCRIPTION = """\
|
11 |
-
Shakti LLMs (Large Language Models) are a group of compact language models specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT (Internet of Things) systems. These models provide support for vernacular languages and domain-specific tasks, making them particularly suitable for industries such as healthcare, finance, and customer service.
|
12 |
-
For more details, please check [here](https://arxiv.org/pdf/2410.11331v1)
|
13 |
-
"""
|
14 |
-
|
15 |
-
|
16 |
-
# """\
|
17 |
-
# Shakti LLMs are a group of small language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service.
|
18 |
-
# For more details, please check [here](https://arxiv.org/pdf/2410.11331v1).
|
19 |
-
# """
|
20 |
-
|
21 |
-
|
22 |
-
# Custom CSS for the send button
|
23 |
-
CUSTOM_CSS = """
|
24 |
-
.send-btn {
|
25 |
-
padding: 0.5rem !important;
|
26 |
-
width: 55px !important;
|
27 |
-
height: 55px !important;
|
28 |
-
border-radius: 50% !important;
|
29 |
-
margin-top: 1rem;
|
30 |
-
cursor: pointer;
|
31 |
-
}
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
position: absolute;
|
37 |
-
top: 50%;
|
38 |
-
left: 50%;
|
39 |
-
transform: translate(-50%, -50%);
|
40 |
-
}
|
41 |
"""
|
42 |
|
43 |
MAX_MAX_NEW_TOKENS = 2048
|
@@ -46,63 +20,37 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "2048"))
|
|
46 |
|
47 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
"
|
54 |
-
|
55 |
-
|
56 |
-
# Initialize tokenizer and model variables
|
57 |
-
tokenizer = None
|
58 |
-
model = None
|
59 |
-
current_model = "Shakti-2.5B" # Keep track of current model
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
global tokenizer, model, current_model
|
64 |
-
model_id = model_options[selected_model]
|
65 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI"))
|
66 |
-
model = AutoModelForCausalLM.from_pretrained(
|
67 |
-
model_id,
|
68 |
-
device_map="auto",
|
69 |
-
torch_dtype=torch.bfloat16,
|
70 |
-
token=os.getenv("SHAKTI")
|
71 |
-
)
|
72 |
-
model.eval()
|
73 |
-
print("Selected Model: ", selected_model)
|
74 |
-
current_model = selected_model
|
75 |
-
|
76 |
-
|
77 |
-
# Initial model load
|
78 |
-
load_model("Shakti-2.5B")
|
79 |
|
80 |
|
|
|
81 |
def generate(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
) -> Iterator[str]:
|
90 |
conversation = []
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
conversation.extend([
|
95 |
json.loads(os.getenv("PROMPT")),
|
96 |
{"role": "user", "content": user},
|
97 |
{"role": "assistant", "content": assistant},
|
98 |
-
]
|
99 |
-
|
100 |
-
for user, assistant in chat_history:
|
101 |
-
conversation.extend([
|
102 |
-
{"role": "user", "content": user},
|
103 |
-
{"role": "assistant", "content": assistant},
|
104 |
-
])
|
105 |
-
|
106 |
conversation.append({"role": "user", "content": message})
|
107 |
|
108 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
@@ -132,167 +80,56 @@ def generate(
|
|
132 |
yield "".join(outputs)
|
133 |
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
chat_history.append((message, bot_message))
|
140 |
-
return "", chat_history
|
141 |
-
|
142 |
-
|
143 |
-
def get_examples(selected_model):
|
144 |
-
examples = {
|
145 |
-
"Shakti-100M": [
|
146 |
-
["Tell me a story"],
|
147 |
-
["Write a short poem on Rose"],
|
148 |
-
["What are computers"]
|
149 |
-
],
|
150 |
-
"Shakti-250M": [
|
151 |
-
["Can you explain the pathophysiology of hypertension and its impact on the cardiovascular system?"],
|
152 |
-
["What are the potential side effects of beta-blockers in the treatment of arrhythmias?"],
|
153 |
-
["What foods are good for boosting the immune system?"],
|
154 |
-
["What is the difference between a stock and a bond?"],
|
155 |
-
["How can I start saving for retirement?"],
|
156 |
-
["What are some low-risk investment options?"]
|
157 |
-
],
|
158 |
-
"Shakti-2.5B": [
|
159 |
-
["Tell me a story"],
|
160 |
-
["write a short poem which is hard to sing"],
|
161 |
-
['मुझे भारतीय इतिहास के बारे में बताएं']
|
162 |
-
]
|
163 |
-
}
|
164 |
-
return examples.get(selected_model, [])
|
165 |
-
|
166 |
-
|
167 |
-
def on_model_select(selected_model):
|
168 |
-
load_model(selected_model) # Load the selected model
|
169 |
-
# Return the message and chat history updates
|
170 |
-
return gr.update(value=""), gr.update(value=[]) # Clear message and chat history
|
171 |
-
|
172 |
-
|
173 |
-
def update_examples_visibility(selected_model):
|
174 |
-
# Return individual updates for each example section
|
175 |
-
return (
|
176 |
-
gr.update(visible=selected_model == "Shakti-100M"),
|
177 |
-
gr.update(visible=selected_model == "Shakti-250M"),
|
178 |
-
gr.update(visible=selected_model == "Shakti-2.5B")
|
179 |
-
)
|
180 |
-
|
181 |
-
|
182 |
-
def example_selector(example):
|
183 |
-
return example
|
184 |
-
|
185 |
-
|
186 |
-
with gr.Blocks(css=CUSTOM_CSS) as demo:
|
187 |
-
gr.Markdown(DESCRIPTION)
|
188 |
-
|
189 |
-
with gr.Row():
|
190 |
-
model_dropdown = gr.Dropdown(
|
191 |
-
label="Select Model",
|
192 |
-
choices=list(model_options.keys()),
|
193 |
-
value="Shakti-2.5B",
|
194 |
-
interactive=True
|
195 |
-
)
|
196 |
-
|
197 |
-
chatbot = gr.Chatbot()
|
198 |
-
|
199 |
-
with gr.Row():
|
200 |
-
with gr.Column(scale=20):
|
201 |
-
msg = gr.Textbox(
|
202 |
-
label="Message",
|
203 |
-
placeholder="Enter your message here",
|
204 |
-
lines=2,
|
205 |
-
show_label=False
|
206 |
-
)
|
207 |
-
with gr.Column(scale=1, min_width=50):
|
208 |
-
send_btn = gr.Button(
|
209 |
-
value="➤",
|
210 |
-
variant="primary",
|
211 |
-
elem_classes=["send-btn"]
|
212 |
-
)
|
213 |
-
|
214 |
-
with gr.Accordion("Parameters", open=False):
|
215 |
-
max_tokens_slider = gr.Slider(
|
216 |
label="Max new tokens",
|
217 |
minimum=1,
|
218 |
maximum=MAX_MAX_NEW_TOKENS,
|
219 |
step=1,
|
220 |
value=DEFAULT_MAX_NEW_TOKENS,
|
221 |
-
)
|
222 |
-
|
223 |
label="Temperature",
|
224 |
minimum=0.1,
|
225 |
maximum=4.0,
|
226 |
step=0.1,
|
227 |
value=0.6,
|
228 |
-
)
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
gr.Examples(
|
263 |
-
examples=get_examples("Shakti-2.5B"),
|
264 |
-
inputs=msg,
|
265 |
-
label="Example prompts for Shakti-2.5B",
|
266 |
-
fn=example_selector
|
267 |
-
)
|
268 |
-
|
269 |
-
|
270 |
-
# Update model selection and examples visibility
|
271 |
-
def combined_update(selected_model):
|
272 |
-
msg_update, chat_update = on_model_select(selected_model)
|
273 |
-
examples_100m_update, examples_250m_update, examples_2_5b_update = update_examples_visibility(
|
274 |
-
selected_model)
|
275 |
-
return [
|
276 |
-
msg_update,
|
277 |
-
chat_update,
|
278 |
-
examples_100m_update,
|
279 |
-
examples_250m_update,
|
280 |
-
examples_2_5b_update
|
281 |
-
]
|
282 |
-
|
283 |
-
|
284 |
-
# Updated change event handler
|
285 |
-
model_dropdown.change(
|
286 |
-
combined_update,
|
287 |
-
inputs=[model_dropdown],
|
288 |
-
outputs=[
|
289 |
-
msg,
|
290 |
-
chatbot,
|
291 |
-
examples_100m,
|
292 |
-
examples_250m,
|
293 |
-
examples_2_5b
|
294 |
-
]
|
295 |
-
)
|
296 |
|
297 |
if __name__ == "__main__":
|
298 |
demo.queue(max_size=20).launch()
|
|
|
1 |
import os
|
2 |
from threading import Thread
|
3 |
from typing import Iterator
|
4 |
+
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
import torch
|
8 |
import json
|
9 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
DESCRIPTION = """\
|
13 |
+
Shakti is a 2.5 billion parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service
|
14 |
+
For more details, please check [here](https://arxiv.org/pdf/2410.11331v1).
|
|
|
|
|
|
|
|
|
|
|
15 |
"""
|
16 |
|
17 |
MAX_MAX_NEW_TOKENS = 2048
|
|
|
20 |
|
21 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
22 |
|
23 |
+
model_id = "SandLogicTechnologies/Shakti-2.5B"
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI"))
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_id,
|
27 |
+
device_map="auto",
|
28 |
+
torch_dtype=torch.bfloat16,
|
29 |
+
token=os.getenv("SHAKTI")
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
)
|
32 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
+
@spaces.GPU(duration=90)
|
36 |
def generate(
|
37 |
+
message: str,
|
38 |
+
chat_history: list[tuple[str, str]],
|
39 |
+
max_new_tokens: int = 1024,
|
40 |
+
temperature: float = 0.6,
|
41 |
+
top_p: float = 0.9,
|
42 |
+
top_k: int = 50,
|
43 |
+
repetition_penalty: float = 1.2,
|
44 |
) -> Iterator[str]:
|
45 |
conversation = []
|
46 |
+
for user, assistant in chat_history:
|
47 |
+
conversation.extend(
|
48 |
+
[
|
|
|
49 |
json.loads(os.getenv("PROMPT")),
|
50 |
{"role": "user", "content": user},
|
51 |
{"role": "assistant", "content": assistant},
|
52 |
+
]
|
53 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
conversation.append({"role": "user", "content": message})
|
55 |
|
56 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
|
|
80 |
yield "".join(outputs)
|
81 |
|
82 |
|
83 |
+
chat_interface = gr.ChatInterface(
|
84 |
+
fn=generate,
|
85 |
+
additional_inputs=[
|
86 |
+
gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
label="Max new tokens",
|
88 |
minimum=1,
|
89 |
maximum=MAX_MAX_NEW_TOKENS,
|
90 |
step=1,
|
91 |
value=DEFAULT_MAX_NEW_TOKENS,
|
92 |
+
),
|
93 |
+
gr.Slider(
|
94 |
label="Temperature",
|
95 |
minimum=0.1,
|
96 |
maximum=4.0,
|
97 |
step=0.1,
|
98 |
value=0.6,
|
99 |
+
),
|
100 |
+
# gr.Slider(
|
101 |
+
# label="Top-p (nucleus sampling)",
|
102 |
+
# minimum=0.05,
|
103 |
+
# maximum=1.0,
|
104 |
+
# step=0.05,
|
105 |
+
# value=0.9,
|
106 |
+
# ),
|
107 |
+
# gr.Slider(
|
108 |
+
# label="Top-k",
|
109 |
+
# minimum=1,
|
110 |
+
# maximum=1000,
|
111 |
+
# step=1,
|
112 |
+
# value=50,
|
113 |
+
# ),
|
114 |
+
# gr.Slider(
|
115 |
+
# label="Repetition penalty",
|
116 |
+
# minimum=1.0,
|
117 |
+
# maximum=2.0,
|
118 |
+
# step=0.05,
|
119 |
+
# value=1.2,
|
120 |
+
# ),
|
121 |
+
],
|
122 |
+
stop_btn=None,
|
123 |
+
examples=[
|
124 |
+
["Tell me a story"], ["write a short poem which is hard to sing"], ['मुझे भारतीय इतिहास के बारे में बताएं']
|
125 |
+
],
|
126 |
+
cache_examples=False,
|
127 |
+
)
|
128 |
+
|
129 |
+
with gr.Blocks(css="style.css", fill_height=True) as demo:
|
130 |
+
gr.Markdown(DESCRIPTION)
|
131 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
132 |
+
chat_interface.render()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
if __name__ == "__main__":
|
135 |
demo.queue(max_size=20).launch()
|