Spaces:
Running
on
T4
Running
on
T4
SandLogicTechnologies
commited on
Commit
•
bb12293
1
Parent(s):
d816a8a
Update app.py
Browse files
app.py
CHANGED
@@ -29,9 +29,11 @@ model_options = {
|
|
29 |
# Initialize tokenizer and model variables
|
30 |
tokenizer = None
|
31 |
model = None
|
|
|
|
|
32 |
|
33 |
def load_model(selected_model: str):
|
34 |
-
global tokenizer, model
|
35 |
model_id = model_options[selected_model]
|
36 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI"))
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -41,29 +43,44 @@ def load_model(selected_model: str):
|
|
41 |
token=os.getenv("SHAKTI")
|
42 |
)
|
43 |
model.eval()
|
|
|
|
|
44 |
|
45 |
# Initial model load (default to 2.5B)
|
46 |
load_model("Shakti-2.5B")
|
47 |
|
|
|
48 |
@spaces.GPU(duration=90)
|
49 |
def generate(
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
) -> Iterator[str]:
|
58 |
conversation = []
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
conversation.append({"role": "user", "content": message})
|
68 |
|
69 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
@@ -92,51 +109,34 @@ def generate(
|
|
92 |
outputs.append(text)
|
93 |
yield "".join(outputs)
|
94 |
|
|
|
95 |
def update_examples(selected_model):
|
96 |
if selected_model == "Shakti-100M":
|
97 |
return [["Tell me a story"],
|
98 |
-
|
99 |
-
|
100 |
elif selected_model == "Shakti-250M":
|
101 |
return [["Can you explain the pathophysiology of hypertension and its impact on the cardiovascular system?"],
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
else:
|
111 |
-
return [["Tell me a story"], ["write a short poem which is hard to sing"],
|
|
|
|
|
112 |
|
113 |
def on_model_select(selected_model):
|
114 |
load_model(selected_model) # Load the selected model
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
additional_inputs=[
|
121 |
-
gr.Slider(
|
122 |
-
label="Max new tokens",
|
123 |
-
minimum=1,
|
124 |
-
maximum=MAX_MAX_NEW_TOKENS,
|
125 |
-
step=1,
|
126 |
-
value=DEFAULT_MAX_NEW_TOKENS,
|
127 |
-
),
|
128 |
-
gr.Slider(
|
129 |
-
label="Temperature",
|
130 |
-
minimum=0.1,
|
131 |
-
maximum=4.0,
|
132 |
-
step=0.1,
|
133 |
-
value=0.6,
|
134 |
-
),
|
135 |
-
],
|
136 |
-
stop_btn=None,
|
137 |
-
examples=update_examples("Shakti-2.5B"), # Set initial examples for 2.5B model
|
138 |
-
cache_examples=False,
|
139 |
-
)
|
140 |
|
141 |
with gr.Blocks(css="style.css", fill_height=True) as demo:
|
142 |
gr.Markdown(DESCRIPTION)
|
@@ -150,10 +150,32 @@ with gr.Blocks(css="style.css", fill_height=True) as demo:
|
|
150 |
interactive=True,
|
151 |
)
|
152 |
|
153 |
-
#
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
-
|
|
|
157 |
|
158 |
-
|
159 |
-
demo.queue(max_size=20).launch()
|
|
|
29 |
# Initialize tokenizer and model variables
|
30 |
tokenizer = None
|
31 |
model = None
|
32 |
+
current_model = "Shakti-2.5B" # Keep track of current model
|
33 |
+
|
34 |
|
35 |
def load_model(selected_model: str):
|
36 |
+
global tokenizer, model, current_model
|
37 |
model_id = model_options[selected_model]
|
38 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI"))
|
39 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
43 |
token=os.getenv("SHAKTI")
|
44 |
)
|
45 |
model.eval()
|
46 |
+
current_model = selected_model # Update the current model
|
47 |
+
|
48 |
|
49 |
# Initial model load (default to 2.5B)
|
50 |
load_model("Shakti-2.5B")
|
51 |
|
52 |
+
|
53 |
@spaces.GPU(duration=90)
|
54 |
def generate(
|
55 |
+
message: str,
|
56 |
+
chat_history: list[tuple[str, str]],
|
57 |
+
max_new_tokens: int = 1024,
|
58 |
+
temperature: float = 0.6,
|
59 |
+
top_p: float = 0.9,
|
60 |
+
top_k: int = 50,
|
61 |
+
repetition_penalty: float = 1.2,
|
62 |
) -> Iterator[str]:
|
63 |
conversation = []
|
64 |
+
|
65 |
+
# Conditional logic for adding prompt based on model
|
66 |
+
if current_model == "Shakti-2.5B":
|
67 |
+
for user, assistant in chat_history:
|
68 |
+
conversation.extend(
|
69 |
+
[
|
70 |
+
json.loads(os.getenv("PROMPT")),
|
71 |
+
{"role": "user", "content": user},
|
72 |
+
{"role": "assistant", "content": assistant},
|
73 |
+
]
|
74 |
+
)
|
75 |
+
else:
|
76 |
+
for user, assistant in chat_history:
|
77 |
+
conversation.extend(
|
78 |
+
[
|
79 |
+
{"role": "user", "content": user},
|
80 |
+
{"role": "assistant", "content": assistant},
|
81 |
+
]
|
82 |
+
)
|
83 |
+
|
84 |
conversation.append({"role": "user", "content": message})
|
85 |
|
86 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
|
|
109 |
outputs.append(text)
|
110 |
yield "".join(outputs)
|
111 |
|
112 |
+
|
113 |
def update_examples(selected_model):
|
114 |
if selected_model == "Shakti-100M":
|
115 |
return [["Tell me a story"],
|
116 |
+
["Write a short poem on Rose"],
|
117 |
+
["What are computers"]]
|
118 |
elif selected_model == "Shakti-250M":
|
119 |
return [["Can you explain the pathophysiology of hypertension and its impact on the cardiovascular system?"],
|
120 |
+
["What are the potential side effects of beta-blockers in the treatment of arrhythmias?"],
|
121 |
+
["What foods are good for boosting the immune system?"],
|
122 |
+
["What is the difference between a stock and a bond?"],
|
123 |
+
["How can I start saving for retirement?"],
|
124 |
+
["What are some low-risk investment options?"],
|
125 |
+
["What is a power of attorney and when is it used?"],
|
126 |
+
["What are the key differences between a will and a trust?"],
|
127 |
+
["How do I legally protect my business name?"]]
|
128 |
else:
|
129 |
+
return [["Tell me a story"], ["write a short poem which is hard to sing"],
|
130 |
+
['मुझे भारतीय इतिहास के बारे में बताएं']]
|
131 |
+
|
132 |
|
133 |
def on_model_select(selected_model):
|
134 |
load_model(selected_model) # Load the selected model
|
135 |
+
examples = update_examples(selected_model) # Update examples
|
136 |
+
return gr.update(examples=examples), gr.update(value=[]) # Clear the chat space and update examples
|
137 |
+
|
138 |
+
|
139 |
+
chat_history = gr.Chatbot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
with gr.Blocks(css="style.css", fill_height=True) as demo:
|
142 |
gr.Markdown(DESCRIPTION)
|
|
|
150 |
interactive=True,
|
151 |
)
|
152 |
|
153 |
+
# Create the interface with dynamic inputs and chat history
|
154 |
+
max_tokens_slider = gr.Slider(
|
155 |
+
label="Max new tokens",
|
156 |
+
minimum=1,
|
157 |
+
maximum=MAX_MAX_NEW_TOKENS,
|
158 |
+
step=1,
|
159 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
160 |
+
)
|
161 |
+
|
162 |
+
temperature_slider = gr.Slider(
|
163 |
+
label="Temperature",
|
164 |
+
minimum=0.1,
|
165 |
+
maximum=4.0,
|
166 |
+
step=0.1,
|
167 |
+
value=0.6,
|
168 |
+
)
|
169 |
+
|
170 |
+
chat_interface = gr.Interface(
|
171 |
+
fn=generate,
|
172 |
+
inputs=[gr.Textbox(lines=2, placeholder="Enter your message here"), chat_history, max_tokens_slider,
|
173 |
+
temperature_slider],
|
174 |
+
outputs=chat_history,
|
175 |
+
live=True,
|
176 |
+
)
|
177 |
|
178 |
+
# Function to handle model change and update examples dynamically
|
179 |
+
model_dropdown.change(on_model_select, inputs=model_dropdown, outputs=[chat_interface, chat_history])
|
180 |
|
181 |
+
demo.launch()
|
|