Shakti-250M / app.py
SandLogicTechnologies's picture
Update app.py
fa553a3 verified
raw
history blame
4.6 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
import json
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DESCRIPTION = """\
Shakti is a 250 million parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service
For more details, please check [here](https://arxiv.org/pdf/2410.11331v1).
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "2048"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "SandLogicTechnologies/Shakti-250M"
tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI"))
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
token=os.getenv("SHAKTI")
)
model.eval()
@spaces.GPU(duration=90)
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
# gr.Slider(
# label="Top-p (nucleus sampling)",
# minimum=0.05,
# maximum=1.0,
# step=0.05,
# value=0.9,
# ),
# gr.Slider(
# label="Top-k",
# minimum=1,
# maximum=1000,
# step=1,
# value=50,
# ),
# gr.Slider(
# label="Repetition penalty",
# minimum=1.0,
# maximum=2.0,
# step=0.05,
# value=1.2,
# ),
],
stop_btn=None,
examples=[
["Can you explain the pathophysiology of hypertension and its impact on the cardiovascular system?"],
["What are the potential side effects of beta-blockers in the treatment of arrhythmias?"],
["What foods are good for boosting the immune system?"],
["What is the difference between a stock and a bond?"],
["How can I start saving for retirement?"],
["What are some low-risk investment options?"],
["What is a power of attorney and when is it used?"],
["What are the key differences between a will and a trust?"],
["How do I legally protect my business name?"]
],
cache_examples=False,
)
with gr.Blocks(css="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()