import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch import json from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer DESCRIPTION = """\ Shakti is a 250 million parameter language model specifically optimized for resource-constrained environments such as edge devices, including smartphones, wearables, and IoT systems. With support for vernacular languages and domain-specific tasks, Shakti excels in industries such as healthcare, finance, and customer service For more details, please check [here](https://arxiv.org/pdf/2410.11331v1). """ MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "2048")) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model_id = "SandLogicTechnologies/Shakti-250M" tokenizer = AutoTokenizer.from_pretrained(model_id, token=os.getenv("SHAKTI")) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, token=os.getenv("SHAKTI") ) model.eval() @spaces.GPU(duration=90) def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] for user, assistant in chat_history: conversation.extend( [ {"role": "user", "content": user}, {"role": "assistant", "content": assistant}, ] ) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), # gr.Slider( # label="Top-p (nucleus sampling)", # minimum=0.05, # maximum=1.0, # step=0.05, # value=0.9, # ), # gr.Slider( # label="Top-k", # minimum=1, # maximum=1000, # step=1, # value=50, # ), # gr.Slider( # label="Repetition penalty", # minimum=1.0, # maximum=2.0, # step=0.05, # value=1.2, # ), ], stop_btn=None, examples=[ ["Can you explain the pathophysiology of hypertension and its impact on the cardiovascular system?"], ["What are the potential side effects of beta-blockers in the treatment of arrhythmias?"], ["What foods are good for boosting the immune system?"], ["What is the difference between a stock and a bond?"], ["How can I start saving for retirement?"], ["What are some low-risk investment options?"], ["What is a power of attorney and when is it used?"], ["What are the key differences between a will and a trust?"], ["How do I legally protect my business name?"] ], cache_examples=False, ) with gr.Blocks(css="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button") chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()