Spaces:
Running
Running
sanjeevl10
commited on
Commit
β’
93a1678
1
Parent(s):
2519a3a
Removed app_memory, StockPredictLLM
Browse files- StockPredictionLLM.xml +34 -0
- app_test3_memory.py +0 -306
- chainlit.md +20 -1
StockPredictionLLM.xml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<mxfile host="app.diagrams.net">
|
2 |
+
<diagram name="Page-1">
|
3 |
+
<mxGraphModel dx="819" dy="641" grid="1" gridSize="10" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="0" shadow="0">
|
4 |
+
<root>
|
5 |
+
<mxCell id="0" />
|
6 |
+
<mxCell id="1" parent="0" />
|
7 |
+
<mxCell id="2" value="Data Collection" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
|
8 |
+
<mxGeometry x="280" y="20" width="200" height="100" as="geometry" />
|
9 |
+
</mxCell>
|
10 |
+
<mxCell id="3" value="Historical Data
News Data
Stock Ticker Information" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
|
11 |
+
<mxGeometry x="320" y="60" width="120" height="80" as="geometry" />
|
12 |
+
</mxCell>
|
13 |
+
<mxCell id="4" value="Data Analyst" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
|
14 |
+
<mxGeometry x="280" y="140" width="200" height="60" as="geometry" />
|
15 |
+
</mxCell>
|
16 |
+
<mxCell id="5" value="Analyzes and preprocesses the data" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
|
17 |
+
<mxGeometry x="320" y="160" width="120" height="40" as="geometry" />
|
18 |
+
</mxCell>
|
19 |
+
<mxCell id="6" value="ARIMA Model (using Historical Data)" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
|
20 |
+
<mxGeometry x="80" y="240" width="200" height="60" as="geometry" />
|
21 |
+
</mxCell>
|
22 |
+
<mxCell id="7" value="Random Forest Model (using News Data)" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
|
23 |
+
<mxGeometry x="480" y="240" width="200" height="60" as="geometry" />
|
24 |
+
</mxCell>
|
25 |
+
<mxCell id="8" value="Prediction Output" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
|
26 |
+
<mxGeometry x="280" y="340" width="200" height="60" as="geometry" />
|
27 |
+
</mxCell>
|
28 |
+
<mxCell id="9" value="Results from ARIMA and Random Forest models" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
|
29 |
+
<mxGeometry x="320" y="360" width="120" height="40" as="geometry" />
|
30 |
+
</mxCell>
|
31 |
+
<mxCell id="10" value="Evaluator" style="rounded=1;whiteSpace=wrap;html=1;" vertex="1" parent="1">
|
32 |
+
<mxGeometry x="280" y="440" width="200" height="60" as="geometry" />
|
33 |
+
</mxCell>
|
34 |
+
<mxCell id="11" value="Evaluates the prediction outputs" style="rounded=1;white
|
app_test3_memory.py
DELETED
@@ -1,306 +0,0 @@
|
|
1 |
-
from langchain_experimental.agents import create_pandas_dataframe_agent
|
2 |
-
from langchain.llms import OpenAI
|
3 |
-
import chainlit as cl
|
4 |
-
from plotly.subplots import make_subplots
|
5 |
-
import utils as u
|
6 |
-
from langchain.agents import AgentExecutor, create_openai_tools_agent
|
7 |
-
from langchain_core.messages import BaseMessage, HumanMessage
|
8 |
-
from langchain_openai import ChatOpenAI
|
9 |
-
from langchain_core.output_parsers.openai_functions import JsonOutputFunctionsParser
|
10 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
11 |
-
from tools import data_analyst
|
12 |
-
from tools import stock_sentiment_evalutor
|
13 |
-
import functools
|
14 |
-
from typing import Annotated
|
15 |
-
import operator
|
16 |
-
from typing import Sequence, TypedDict
|
17 |
-
from langchain.agents import initialize_agent, Tool
|
18 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
19 |
-
from langgraph.graph import END, StateGraph
|
20 |
-
import numpy as np
|
21 |
-
import pandas as pd
|
22 |
-
from dotenv import load_dotenv
|
23 |
-
import os
|
24 |
-
import yfinance as yf
|
25 |
-
import functools
|
26 |
-
from typing import Annotated
|
27 |
-
import operator
|
28 |
-
from typing import Sequence, TypedDict
|
29 |
-
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
30 |
-
from langgraph.graph import END, StateGraph
|
31 |
-
from tools import data_analyst, forecasting_expert_arima, forecasting_expert_rf, evaluator, stock_sentiment_evalutor, investment_advisor
|
32 |
-
from chainlit.input_widget import Select
|
33 |
-
import matplotlib.pyplot as plt
|
34 |
-
from langgraph.checkpoint.memory import MemorySaver
|
35 |
-
|
36 |
-
load_dotenv()
|
37 |
-
HF_ACCESS_TOKEN = os.environ["HF_ACCESS_TOKEN"]
|
38 |
-
DAYS_TO_FETCH_NEWS = os.environ["DAYS_TO_FETCH_NEWS"]
|
39 |
-
NO_OF_NEWS_ARTICLES_TO_FETCH = os.environ["NO_OF_NEWS_ARTICLES_TO_FETCH"]
|
40 |
-
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
|
41 |
-
|
42 |
-
from GoogleNews import GoogleNews
|
43 |
-
|
44 |
-
def search_news(stockticker):
|
45 |
-
"""Useful to search the internet for news about a given topic and return relevant results."""
|
46 |
-
# Set the number of top news results to return
|
47 |
-
googlenews = GoogleNews()
|
48 |
-
googlenews.set_period('7d')
|
49 |
-
googlenews.get_news(stockticker)
|
50 |
-
result_string=googlenews.get_texts()
|
51 |
-
|
52 |
-
return result_string
|
53 |
-
|
54 |
-
|
55 |
-
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
|
56 |
-
# Each worker node will be given a name and some tools.
|
57 |
-
prompt = ChatPromptTemplate.from_messages(
|
58 |
-
[
|
59 |
-
(
|
60 |
-
"system",
|
61 |
-
system_prompt,
|
62 |
-
),
|
63 |
-
MessagesPlaceholder(variable_name="messages"),
|
64 |
-
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
65 |
-
]
|
66 |
-
)
|
67 |
-
agent = create_openai_tools_agent(llm, tools, prompt)
|
68 |
-
executor = AgentExecutor(agent=agent, tools=tools)
|
69 |
-
return executor
|
70 |
-
|
71 |
-
|
72 |
-
def agent_node(state, agent, name):
|
73 |
-
result = agent.invoke(state)
|
74 |
-
return {"messages": [HumanMessage(content=result["output"], name=name)]}
|
75 |
-
|
76 |
-
llm = ChatOpenAI(model="gpt-3.5-turbo")
|
77 |
-
|
78 |
-
#======================== AGENTS ==================================
|
79 |
-
# The agent state is the input to each node in the graph
|
80 |
-
class AgentState(TypedDict):
|
81 |
-
# The annotation tells the graph that new messages will always
|
82 |
-
# be added to the current states
|
83 |
-
messages: Annotated[Sequence[BaseMessage], operator.add]
|
84 |
-
# The 'next' field indicates where to route to next
|
85 |
-
next: str
|
86 |
-
|
87 |
-
# DATA ANALYST
|
88 |
-
prompt_data_analyst="You are a stock data analyst.\
|
89 |
-
Provide correct stock ticker from Yahoo Finance.\
|
90 |
-
Expected output: stocticker.\
|
91 |
-
Provide it in the following format: >>stockticker>> \
|
92 |
-
for example: >>AAPL>>"
|
93 |
-
|
94 |
-
tools_data_analyst=data_analyst.data_analyst_tools()
|
95 |
-
data_agent = create_agent(
|
96 |
-
llm,
|
97 |
-
tools_data_analyst,
|
98 |
-
prompt_data_analyst)
|
99 |
-
get_historical_prices = functools.partial(agent_node, agent=data_agent, name="Data_analyst")
|
100 |
-
|
101 |
-
#ARIMA Forecasting expert
|
102 |
-
prompt_forecasting_expert_arima="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
103 |
-
You are stock prediction expert, \
|
104 |
-
take historical stock data from message and train the ARIMA model from statsmodels Python library on the last week,then provide prediction for the 'Close' price for the next day.\
|
105 |
-
Give the value for mae_arima to Evaluator.\
|
106 |
-
Expected output:list of predicted prices with predicted dates for a selected stock ticker and mae_arima value.\n
|
107 |
-
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
108 |
-
|
109 |
-
tools_forecasting_expert_arima=forecasting_expert_arima.forecasting_expert_arima_tools()
|
110 |
-
code_forecasting_arima = create_agent(
|
111 |
-
llm,
|
112 |
-
tools_forecasting_expert_arima,
|
113 |
-
prompt_forecasting_expert_arima,
|
114 |
-
)
|
115 |
-
predict_future_prices_arima = functools.partial(agent_node, agent=code_forecasting_arima, name="Forecasting_expert_ARIMA")
|
116 |
-
|
117 |
-
# RF Forecasting expert
|
118 |
-
prompt_forecasting_expert_random_forest="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
119 |
-
You are stock prediction expert, \
|
120 |
-
take historical stock data from message and train the Random forest model from statsmodels Python library on the last week,then provide prediction for the 'Close' price for the next day.\
|
121 |
-
Give the value for mae_rf to Evaluator.\
|
122 |
-
Expected output:list of predicted prices with predicted dates for a selected stock ticker and mae_rf value.\n
|
123 |
-
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
124 |
-
|
125 |
-
tools_forecasting_expert_random_forest=forecasting_expert_rf.forecasting_expert_rf_tools()
|
126 |
-
code_forecasting_random_forest = create_agent(
|
127 |
-
llm,
|
128 |
-
tools_forecasting_expert_random_forest,
|
129 |
-
prompt_forecasting_expert_random_forest,
|
130 |
-
)
|
131 |
-
predict_future_prices_random_forest = functools.partial(agent_node, agent=code_forecasting_random_forest, name="Forecasting_expert_random_forest")
|
132 |
-
|
133 |
-
# EVALUATOR
|
134 |
-
prompt_evaluator="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
135 |
-
You are an evaluator retrieve arima_prediction and arima mean average error from forecasting expert arima and rf_prediction and mean average error for random forest from forecasting expert random forest\
|
136 |
-
print final prediction number.
|
137 |
-
Next, compare prediction price and current price to provide reccommendation if he should buy/sell/hold the stock. \
|
138 |
-
Expected output: one value for the prediction, explain why you have selected this value, reccommendation buy or sell stock and why.\
|
139 |
-
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
140 |
-
|
141 |
-
tools_evaluate=evaluator.evaluator_tools()
|
142 |
-
code_evaluate = create_agent(
|
143 |
-
llm,
|
144 |
-
tools_evaluate,
|
145 |
-
prompt_evaluator,
|
146 |
-
)
|
147 |
-
evaluate = functools.partial(agent_node, agent=code_evaluate, name="Evaluator")
|
148 |
-
|
149 |
-
#Stock Sentiment Evaluator
|
150 |
-
prompt_sentiment_evaluator="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
151 |
-
You are a stock sentiment evaluator, that takes in a stock ticker and
|
152 |
-
then using your StockSentimentAnalysis tool retrieve news for the stock based on the configured data range starting today and their corresponding sentiment,
|
153 |
-
alongwith the most dominant sentiment for the stock\
|
154 |
-
Expected output: List ALL stock news and their sentiment from the StockSentimentAnalysis tool response, and the dominant sentiment for the stock also in StockSentimentAnalysis tool response as is without change\
|
155 |
-
Also ensure you use the tool only once and do not make changes to messages
|
156 |
-
Also you are not to change the response from the tool\
|
157 |
-
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
158 |
-
|
159 |
-
tools_sentiment_evaluator=stock_sentiment_evalutor.sentimental_analysis_tools()
|
160 |
-
sentiment_evaluator = create_agent(
|
161 |
-
llm,
|
162 |
-
tools_sentiment_evaluator,
|
163 |
-
prompt_sentiment_evaluator,
|
164 |
-
)
|
165 |
-
evaluate_sentiment = functools.partial(agent_node, agent=sentiment_evaluator, name="Sentiment_Evaluator")
|
166 |
-
|
167 |
-
# Investment advisor
|
168 |
-
prompt_inv_advisor="""<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
169 |
-
Provide personalized investment advice and recommendations.\
|
170 |
-
Consider user input message for the latest news on the stock.\
|
171 |
-
Provide overall sentiment of the news Positive/Negative/Neutral, and recommend if the user should invest in such stock.\
|
172 |
-
MUST finish the analysis with a summary on the latest news from the user input on the stock!\
|
173 |
-
<|eot_id|><|start_header_id|>assistant<|end_header_id|>"""
|
174 |
-
|
175 |
-
tools_reccommend=investment_advisor.investment_advisor_tools()
|
176 |
-
|
177 |
-
code_inv_advisor = create_agent(
|
178 |
-
llm,
|
179 |
-
tools_reccommend,
|
180 |
-
prompt_inv_advisor,
|
181 |
-
)
|
182 |
-
|
183 |
-
reccommend = functools.partial(agent_node, agent=code_inv_advisor, name="Investment_advisor")
|
184 |
-
|
185 |
-
workflow_data = StateGraph(AgentState)
|
186 |
-
workflow_data.add_node("Data_analyst", get_historical_prices)
|
187 |
-
workflow_data.set_entry_point("Data_analyst")
|
188 |
-
graph_data=workflow_data.compile()
|
189 |
-
|
190 |
-
workflow = StateGraph(AgentState)
|
191 |
-
#workflow.add_node("Data_analyst", get_historical_prices)
|
192 |
-
workflow.add_node("Forecasting_expert_random_forest", predict_future_prices_random_forest)
|
193 |
-
workflow.add_node("Forecasting_expert_ARIMA", predict_future_prices_arima)
|
194 |
-
workflow.add_node("Evaluator", evaluate)
|
195 |
-
|
196 |
-
|
197 |
-
# Finally, add entrypoint
|
198 |
-
workflow.set_entry_point("Forecasting_expert_random_forest")
|
199 |
-
workflow.add_edge("Forecasting_expert_random_forest","Forecasting_expert_ARIMA")
|
200 |
-
workflow.add_edge("Forecasting_expert_ARIMA","Evaluator")
|
201 |
-
workflow.add_edge("Evaluator",END)
|
202 |
-
graph = workflow.compile()
|
203 |
-
|
204 |
-
#Print graph
|
205 |
-
#graph.get_graph().print_ascii()
|
206 |
-
|
207 |
-
memory = MemorySaver()
|
208 |
-
workflow_news = StateGraph(AgentState)
|
209 |
-
workflow_news.add_node("Investment_advisor", reccommend)
|
210 |
-
workflow_news.set_entry_point("Investment_advisor")
|
211 |
-
workflow_news.add_edge("Investment_advisor",END)
|
212 |
-
graph_news = workflow_news.compile(checkpointer=memory)
|
213 |
-
|
214 |
-
from langchain_core.runnables import RunnableConfig
|
215 |
-
@cl.on_chat_start
|
216 |
-
async def on_chat_start():
|
217 |
-
cl.user_session.set("counter", 0)
|
218 |
-
# Sending an image with the local file path
|
219 |
-
elements = [
|
220 |
-
cl.Image(name="image1", display="inline", path="./good_day.jpg",size="large")
|
221 |
-
]
|
222 |
-
await cl.Message(content="Hello there, Welcome to ##StockSavyy!", elements=elements).send()
|
223 |
-
await cl.Message(content="Tell me the stockticker you want me to analyze.").send()
|
224 |
-
|
225 |
-
@cl.on_message
|
226 |
-
async def main(message: cl.Message):
|
227 |
-
#"what is the weather in sf"
|
228 |
-
counter = cl.user_session.get("counter")
|
229 |
-
counter += 1
|
230 |
-
cl.user_session.set("counter", counter)
|
231 |
-
await cl.Message(content=f"You sent {counter} message(s)!").send()
|
232 |
-
if counter==1:
|
233 |
-
inputs = {"messages": [HumanMessage(content=message.content)]}
|
234 |
-
|
235 |
-
res_data = graph_data.invoke(inputs, config=RunnableConfig(callbacks=[
|
236 |
-
cl.LangchainCallbackHandler(
|
237 |
-
to_ignore=["ChannelRead", "RunnableLambda", "ChannelWrite", "__start__", "_execute"]
|
238 |
-
# can add more into the to_ignore: "agent:edges", "call_model"
|
239 |
-
# to_keep=
|
240 |
-
|
241 |
-
)]))
|
242 |
-
#print(res_data)
|
243 |
-
await cl.Message(content=res_data["messages"][-1].content).send()
|
244 |
-
#print('ticker',str(res_data).split(">>"))
|
245 |
-
if len(str(res_data).split(">>")[1])<10:
|
246 |
-
stockticker=(str(res_data).split(">>")[1])
|
247 |
-
else:
|
248 |
-
stockticker=(str(res_data).split(">>")[0])
|
249 |
-
#print('ticker1',stockticker)
|
250 |
-
print('here')
|
251 |
-
df=u.get_stock_price(stockticker)
|
252 |
-
df_history=u.historical_stock_prices(stockticker,90)
|
253 |
-
df_history_to_msg1=eval(str(list((pd.DataFrame(df_history['Close'].values.reshape(1, -1)[0]).T).iloc[0,:])))
|
254 |
-
inputs_all = {"messages": [HumanMessage(content=(f"Predict {stockticker}, historical prices are: {df_history_to_msg1}."))]}
|
255 |
-
#print(inputs_all)
|
256 |
-
df_history=pd.DataFrame(df_history)
|
257 |
-
df_history['stockticker']=np.repeat(stockticker,len(df_history))
|
258 |
-
df_history.to_csv('df_history.csv')
|
259 |
-
|
260 |
-
res = graph.invoke(inputs_all, config=RunnableConfig(callbacks=[
|
261 |
-
cl.LangchainCallbackHandler(
|
262 |
-
to_ignore=["ChannelRead", "RunnableLambda", "ChannelWrite", "__start__", "_execute"]
|
263 |
-
# can add more into the to_ignore: "agent:edges", "call_model"
|
264 |
-
# to_keep=
|
265 |
-
|
266 |
-
)]))
|
267 |
-
await cl.Message(content= res["messages"][-2].content + '\n\n' + res["messages"][-1].content).send()
|
268 |
-
|
269 |
-
df_history=pd.read_csv('df_history.csv')
|
270 |
-
stockticker=str(df_history['stockticker'][0])
|
271 |
-
df_search=search_news(stockticker)
|
272 |
-
with open('search_news.txt', 'w') as a:
|
273 |
-
a.write(str(df_search[0:10]))
|
274 |
-
file = open("search_news.txt", "r")
|
275 |
-
df_search = file.read()
|
276 |
-
print(stockticker)
|
277 |
-
|
278 |
-
config = {"configurable": {"thread_id": "1"}}
|
279 |
-
inputs_news = {"messages": [HumanMessage(content=(f"Summarize articles for {stockticker} to write 2 sentences about following articles: {df_search}."))]}
|
280 |
-
k=0
|
281 |
-
for event in graph_news.stream(inputs_news, config, stream_mode="values"):
|
282 |
-
k+=1
|
283 |
-
if k>1:
|
284 |
-
await cl.Message(content=event["messages"][-1].content).send()
|
285 |
-
|
286 |
-
|
287 |
-
if counter==1:
|
288 |
-
df=u.historical_stock_prices(stockticker,90)
|
289 |
-
df=u.calculate_MACD(df, fast_period=12, slow_period=26, signal_period=9)
|
290 |
-
fig = u.plot_macd2(df)
|
291 |
-
|
292 |
-
if fig:
|
293 |
-
elements = [cl.Pyplot(name="plot", figure=fig, display="inline",size="large"),
|
294 |
-
]
|
295 |
-
await cl.Message(
|
296 |
-
content="Here is the MACD plot",
|
297 |
-
elements=elements,
|
298 |
-
).send()
|
299 |
-
else:
|
300 |
-
await cl.Message(
|
301 |
-
content="Failed to generate the MACD plot."
|
302 |
-
).send()
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
chainlit.md
CHANGED
@@ -1 +1,20 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: StockSavvy
|
3 |
+
emoji: π
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
app_port: 7860
|
9 |
+
---
|
10 |
+
|
11 |
+
## π€ StockSavvy
|
12 |
+
|
13 |
+
> Forecast and analyze stocks and make $$$!!!. Ask me anything about stocks.
|
14 |
+
|
15 |
+
## Data from open-source data: Yahoo finance + Sentiment analysis.
|
16 |
+
LangGraph/Langchain/RAG/Chainlit/OpenAI
|
17 |
+
---
|
18 |
+
|
19 |
+
|
20 |
+
> :wave: Code originates mainly from the amazing AI Makerspace Bootcamp!!! For more see [https://github.com/sanjeevl10/StockSavvyFinal]
|