|
import torch |
|
from torchvision import transforms |
|
from torchvision.transforms.functional import to_pil_image, to_tensor |
|
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor |
|
from diffusers import StableDiffusionInpaintPipeline, EulerDiscreteScheduler |
|
from PIL import Image |
|
import numpy as np |
|
import cv2 |
|
|
|
class SegmentAnythingModel: |
|
def __init__(self, sam_checkpoint, model_type, device): |
|
self.sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) |
|
self.sam.to(device=device) |
|
self.mask_generator = SamAutomaticMaskGenerator( |
|
model=self.sam, |
|
points_per_side=32, |
|
pred_iou_thresh=0.99, |
|
stability_score_thresh=0.92, |
|
crop_n_layers=1, |
|
crop_n_points_downscale_factor=2, |
|
min_mask_region_area=100 |
|
) |
|
self.target_size = (512, 512) |
|
|
|
def preprocess_image(self, image): |
|
"""Resize image to 512x512""" |
|
if isinstance(image, str): |
|
image = Image.open(image) |
|
elif isinstance(image, np.ndarray): |
|
image = Image.fromarray(image) |
|
|
|
|
|
width, height = image.size |
|
|
|
|
|
image = image.resize(self.target_size, Image.Resampling.LANCZOS) |
|
return np.array(image) |
|
|
|
def generate_masks(self, image): |
|
processed_image = self.preprocess_image(image) |
|
return self.mask_generator.generate(processed_image) |
|
|
|
class StableDiffusionInpaintingPipeline: |
|
def __init__(self, model_dir): |
|
|
|
self.scheduler = EulerDiscreteScheduler.from_pretrained(model_dir, subfolder="scheduler") |
|
|
|
|
|
self.pipe = StableDiffusionInpaintPipeline.from_pretrained( |
|
model_dir, |
|
scheduler=self.scheduler, |
|
revision="fp16", |
|
torch_dtype=torch.float16 |
|
) |
|
self.pipe = self.pipe.to("cuda") |
|
self.pipe.enable_xformers_memory_efficient_attention() |
|
self.target_size = (512, 512) |
|
|
|
def preprocess_image(self, image): |
|
"""Ensure image is in the right format and size""" |
|
if isinstance(image, np.ndarray): |
|
image = Image.fromarray(image) |
|
return image.resize(self.target_size, Image.Resampling.LANCZOS) |
|
|
|
def inpaint(self, prompt, image, mask_image, guidance_scale=10, num_inference_steps=60, generator=None): |
|
""" |
|
Args: |
|
prompt (str): The prompt for inpainting |
|
image (PIL.Image or np.ndarray): The original image |
|
mask_image (PIL.Image or np.ndarray): The mask for inpainting |
|
guidance_scale (float): Higher guidance scale encourages images that are closer to the prompt |
|
num_inference_steps (int): Number of denoising steps |
|
generator (torch.Generator): Generator for reproducibility |
|
""" |
|
|
|
if isinstance(image, np.ndarray): |
|
image = Image.fromarray(image) |
|
if isinstance(mask_image, np.ndarray): |
|
mask_image = Image.fromarray(mask_image) |
|
|
|
|
|
image = image.resize(self.target_size, Image.Resampling.LANCZOS) |
|
mask_image = mask_image.resize(self.target_size, Image.Resampling.NEAREST) |
|
|
|
|
|
output = self.pipe( |
|
prompt=prompt, |
|
image=image, |
|
mask_image=mask_image, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
height=512, |
|
width=512 |
|
) |
|
|
|
return output.images[0] |
|
|