Spaces:
Runtime error
Runtime error
File size: 8,339 Bytes
571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 f861c07 102b824 571d313 102b824 9943afd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
from stop_words import get_stop_words
from wordcloud import WordCloud
from datasets import load_dataset
import re
## import data
dataset = load_dataset("Santarabantoosoo/italian_long_covid_tweets")
data = pd.DataFrame.from_dict(dataset["train"])
# load stop words
it_stop_words = load_dataset("Santarabantoosoo/italian-stopwords")
it_stop = pd.DataFrame.from_dict(it_stop_words["train"])
it_stop = it_stop.text.to_list()
## Optimize stop words according to Luca's repo
def format_input(user_key, stopwords):
'''
format user input request to lookup in the database of frequencies
input:
user_key is a string
stopwords is a list of strings
output:
key is a string
'''
key = user_key.lower()
key = re.sub(r'[^\w\s]', ' ', key)
key = ' '.join([el for el in key.split() if not (el in stopwords)])
return key
### Loading TFIDF
TFIDF_21_Jul_Oct = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_21_Jul_Oct")
TFIDF_22_Feb_Apr = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_22_Feb_Apr")
TFIDF_22_May_Jul = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_22_May_Jul")
TFIDF_21_Nov_22_Jan = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_21_Nov_22_Jan")
## Loading whole_text
whole_text_21_Jul_Oct = load_dataset("Santarabantoosoo/whole_text_TF_21_Jul_Oct")
whole_text_22_Feb_Apr = load_dataset("Santarabantoosoo/whole_text_TF_22_Feb_Apr")
whole_text_22_May_Jul = load_dataset("Santarabantoosoo/whole_text_TF_22_May_Jul")
whole_text_21_Nov_22_Jan = load_dataset("Santarabantoosoo/whole_text_TF_21_Nov_22_Jan")
TFIDF_21_Jul_Oct = pd.DataFrame.from_dict(TFIDF_21_Jul_Oct["train"])
TFIDF_22_Feb_Apr = pd.DataFrame.from_dict(TFIDF_22_Feb_Apr["train"])
TFIDF_22_May_Jul = pd.DataFrame.from_dict(TFIDF_22_May_Jul["train"])
TFIDF_21_Nov_22_Jan = pd.DataFrame.from_dict(TFIDF_21_Nov_22_Jan["train"])
whole_text_21_Jul_Oct = pd.DataFrame.from_dict(whole_text_21_Jul_Oct["train"])
whole_text_22_Feb_Apr = pd.DataFrame.from_dict(whole_text_22_Feb_Apr["train"])
whole_text_22_May_Jul = pd.DataFrame.from_dict(whole_text_22_May_Jul["train"])
whole_text_21_Nov_22_Jan = pd.DataFrame.from_dict(whole_text_21_Nov_22_Jan["train"])
ser_TFIDF = []
ser_TFIDF.append(TFIDF_21_Jul_Oct.transpose()[0])
ser_TFIDF.append(TFIDF_22_Feb_Apr.transpose()[0])
ser_TFIDF.append(TFIDF_22_May_Jul.transpose()[0])
ser_TFIDF.append(TFIDF_21_Nov_22_Jan.transpose()[0])
ser_whole_text = []
ser_whole_text.append(whole_text_21_Jul_Oct.transpose()[0])
ser_whole_text.append(whole_text_22_Feb_Apr.transpose()[0])
ser_whole_text.append(whole_text_22_May_Jul.transpose()[0])
ser_whole_text.append(whole_text_21_Nov_22_Jan.transpose()[0])
def plot_time_series(choice, keyword, user_keys):
x = np.arange(2,10,2)
y = [[] for j in range(len(keyword))]
for j in range(len(keyword)):
i=0
while i < len(choice):
try:
y[j].append(choice[i][keyword[j]])
i += 1
except:
y[j].append(0.0)
i += 1
y[j] = np.array(y[j])
x_ticks_labels = ['Q1','Q2','Q3','Q4']
fig, ax = plt.subplots(1,1)
for j in range(len(keyword)):
ax.plot(x,y[j], label = user_keys[j].lower())
# Set number of ticks for x-axis
ax.set_xticks(x)
ax.set_xticklabels(x_ticks_labels, fontsize=12)
leg = plt.legend(loc='best')
plt.xlabel('Time')
plt.title("keywords quartely analysis (July 2021 - July 2022)")
plt.ylabel(f'Freq. from {user_choice}')
return fig
# Wordcloud with anger tweets
angry_tweets = data['tweet'][data["emotion"] == 'anger']
angry_tweets = angry_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
anger_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(angry_tweets))
# Wordcloud with sad tweets
sad_tweets = data['tweet'][data["emotion"] == 'sadness']
sad_tweets = sad_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
sad_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(sad_tweets))
# Wordcloud with joy tweets
joy_tweets = data['tweet'][data["emotion"] == 'joy']
joy_tweets = joy_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
joy_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(joy_tweets))
# Wordcloud with fear tweets
fear_tweets = data['tweet'][data["emotion"] == 'fear']
fear_tweets = fear_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
fear_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(fear_tweets))
## COmbine all plots in a single plot
wc_fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2)
# fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
wc_fig.tight_layout()
ax1.imshow(sad_wordcloud, interpolation="bilinear")
ax1.axis("off")
ax1.set_title('Sadness', {'fontsize': 30})
ax2.imshow(joy_wordcloud, interpolation="bilinear")
ax2.axis("off")
ax2.set_title('Joy', {'fontsize': 30})
ax3.imshow(fear_wordcloud, interpolation="bilinear")
ax3.axis("off")
ax3.set_title('Fear', {'fontsize': 30})
ax4.imshow(anger_wordcloud, interpolation="bilinear")
ax4.axis("off")
ax4.set_title('Anger', {'fontsize': 30})
# plot a pie plot for emotions' distribution
number_tweets_per_day = data.groupby(['date', 'emotion']).agg({'id': 'count'}).reset_index()
number_tweets_per_day["tweet_date"] = pd.to_datetime(number_tweets_per_day["date"])
time_fig = px.line(number_tweets_per_day, x = 'tweet_date', y = 'id', labels = {'id': 'count'}, color = 'emotion',
color_discrete_sequence=px.colors.qualitative.G10)
# create a lineplot for emotions
sentiment_counts = data.groupby('emotion').agg({'id' : 'size'}).reset_index()
sentiment_counts.rename(columns = {'id':'count'}, inplace = True)
sent_fig = px.pie(sentiment_counts, values='count', names='emotion', title='Tweets within each emotion', labels = {'id': 'count'},
color_discrete_sequence=px.colors.qualitative.G10)
sent_fig
def display_plot(image_choice):
if image_choice == 'Sentiment distribution':
return sent_fig
elif image_choice == 'Time series':
return time_fig
elif image_choice == 'Word clouds':
return wc_fig
def display_freq_plot(choice, *args):
user_keys = [arg for arg in args]
# clean input strings to match keywords in the database
keyword = []
for key in user_keys:
keyword.append(format_input(key, it_stop))
if choice == "TFIDF":
return plot_time_series(ser_TFIDF, keyword, user_keys)
elif choice == "Whole_text":
return plot_time_series(ser_whole_text, keyword, user_keys)
with gr.Blocks() as demo:
gr.Markdown("## Choose your adventure")
with gr.Tabs():
with gr.TabItem("Topic modeling"):
gr.Markdown("Nothing here yet")
with gr.TabItem("Word frequency"):
inputs = [gr.Radio(choices = ['TFIDF', 'Whole_text'], label = 'Choose ur method'),
gr.Textbox(label = 'word 1'),
gr.Textbox(label = 'word 2'),
gr.Textbox(label = 'word 3'),
gr.Textbox(label = 'word 4')]
plot_output = gr.Plot(elem_id = 1)
freq_button = gr.Button("Submit")
freq_button.click(display_freq_plot, inputs=inputs, outputs=plot_output)
with gr.TabItem("Sentiment analysis"):
text_input = gr.Radio(choices = ['Sentiment distribution', 'Word clouds', 'Time series'], label = 'Choose ur plot')
sent_plot = gr.Plot()
sent_button = gr.Button("Submit")
sent_button.click(display_plot, inputs=text_input, outputs= sent_plot)
demo.launch(debug=True, show_error = True);
|