File size: 19,247 Bytes
571d313
 
 
 
 
 
 
 
102b824
571d313
 
 
 
 
 
 
102b824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76612b7
102b824
 
571d313
 
102b824
 
571d313
 
102b824
571d313
 
102b824
 
571d313
 
102b824
571d313
 
102b824
 
571d313
 
 
 
 
102b824
 
571d313
 
102b824
571d313
 
 
102b824
 
571d313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102b824
571d313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102b824
 
 
571d313
102b824
 
 
 
 
 
 
 
 
 
76612b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102b824
 
571d313
 
102b824
571d313
102b824
571d313
76612b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
488d437
76612b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102b824
 
 
 
 
76612b7
 
102b824
76612b7
 
 
5b65304
8266d1c
102b824
 
 
f861c07
102b824
4f82b3b
76612b7
 
 
 
9943afd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import gradio as gr 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt
import plotly.express as px
from stop_words import get_stop_words
from wordcloud import WordCloud
from datasets import load_dataset
import re

## import data 

dataset = load_dataset("Santarabantoosoo/italian_long_covid_tweets")
data = pd.DataFrame.from_dict(dataset["train"])


# load stop words

it_stop_words = load_dataset("Santarabantoosoo/italian-stopwords")
it_stop = pd.DataFrame.from_dict(it_stop_words["train"])

it_stop = it_stop.text.to_list()

## Optimize stop words according to Luca's repo

def format_input(user_key, stopwords):
  '''
  format user input request to lookup in the database of frequencies

  input:  
    user_key is a string
    stopwords is a list of strings
  output: 
    key is a string
  '''

  key = user_key.lower()
  key = re.sub(r'[^\w\s]', ' ', key)

  key = ' '.join([el for el in key.split() if not (el in stopwords)])


  return key


### Loading TFIDF

TFIDF_21_Jul_Oct = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_21_Jul_Oct")

TFIDF_22_Feb_Apr = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_22_Feb_Apr")

TFIDF_22_May_Jul = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_22_May_Jul")

TFIDF_21_Nov_22_Jan = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_21_Nov_22_Jan")


## Loading whole_text

whole_text_21_Jul_Oct = load_dataset("Santarabantoosoo/whole_text_TF_21_Jul_Oct")

whole_text_22_Feb_Apr = load_dataset("Santarabantoosoo/whole_text_TF_22_Feb_Apr")

whole_text_22_May_Jul = load_dataset("Santarabantoosoo/whole_text_TF_22_May_Jul")

whole_text_21_Nov_22_Jan = load_dataset("Santarabantoosoo/whole_text_TF_21_Nov_22_Jan")

TFIDF_21_Jul_Oct = pd.DataFrame.from_dict(TFIDF_21_Jul_Oct["train"])

TFIDF_22_Feb_Apr = pd.DataFrame.from_dict(TFIDF_22_Feb_Apr["train"])

TFIDF_22_May_Jul = pd.DataFrame.from_dict(TFIDF_22_May_Jul["train"])

TFIDF_21_Nov_22_Jan = pd.DataFrame.from_dict(TFIDF_21_Nov_22_Jan["train"])

whole_text_21_Jul_Oct = pd.DataFrame.from_dict(whole_text_21_Jul_Oct["train"])

whole_text_22_Feb_Apr = pd.DataFrame.from_dict(whole_text_22_Feb_Apr["train"])

whole_text_22_May_Jul = pd.DataFrame.from_dict(whole_text_22_May_Jul["train"])

whole_text_21_Nov_22_Jan = pd.DataFrame.from_dict(whole_text_21_Nov_22_Jan["train"])

ser_TFIDF = []

ser_TFIDF.append(TFIDF_21_Jul_Oct.transpose()[0])
ser_TFIDF.append(TFIDF_22_Feb_Apr.transpose()[0])
ser_TFIDF.append(TFIDF_22_May_Jul.transpose()[0])
ser_TFIDF.append(TFIDF_21_Nov_22_Jan.transpose()[0])

ser_whole_text = []

ser_whole_text.append(whole_text_21_Jul_Oct.transpose()[0])
ser_whole_text.append(whole_text_22_Feb_Apr.transpose()[0])
ser_whole_text.append(whole_text_22_May_Jul.transpose()[0])
ser_whole_text.append(whole_text_21_Nov_22_Jan.transpose()[0])


def plot_time_series(choice, keyword, user_keys):
    
    x = np.arange(2,10,2)
    
    y = [[] for j in range(len(keyword))]
    
    for j in range(len(keyword)):
      i=0
      while i < len(choice):
        try:
          y[j].append(choice[i][keyword[j]])
          i += 1
        except:
          y[j].append(0.0)
          i += 1

      y[j] = np.array(y[j])


    x_ticks_labels = ['Q1','Q2','Q3','Q4']

    fig, ax = plt.subplots(1,1) 

    for j in range(len(keyword)):
      ax.plot(x,y[j], label = user_keys[j].lower())


    # Set number of ticks for x-axis
    ax.set_xticks(x)
    ax.set_xticklabels(x_ticks_labels, fontsize=12)

    leg = plt.legend(loc='best')
    plt.xlabel('Time')
    plt.title("keywords quartely analysis (July 2021 - July 2022)")
    plt.ylabel(f'Freq. from {user_keys}')
    return fig

# Wordcloud with anger tweets
angry_tweets = data['tweet'][data["emotion"] == 'anger']
angry_tweets = angry_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
anger_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(angry_tweets))


# Wordcloud with sad tweets
sad_tweets = data['tweet'][data["emotion"] == 'sadness']
sad_tweets = sad_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
sad_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(sad_tweets))


 # Wordcloud with joy tweets
joy_tweets = data['tweet'][data["emotion"] == 'joy']
joy_tweets = joy_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
joy_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(joy_tweets))


 # Wordcloud with fear tweets
fear_tweets = data['tweet'][data["emotion"] == 'fear']
fear_tweets = fear_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
fear_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(fear_tweets))

## COmbine all plots in a single plot

wc_fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2)

# fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))

wc_fig.tight_layout()

ax1.imshow(sad_wordcloud, interpolation="bilinear")

ax1.axis("off")

ax1.set_title('Sadness', {'fontsize': 30})


ax2.imshow(joy_wordcloud, interpolation="bilinear")

ax2.axis("off")

ax2.set_title('Joy', {'fontsize': 30})


ax3.imshow(fear_wordcloud, interpolation="bilinear")

ax3.axis("off")

ax3.set_title('Fear', {'fontsize': 30})



ax4.imshow(anger_wordcloud, interpolation="bilinear")

ax4.axis("off")

ax4.set_title('Anger', {'fontsize': 30})


# plot a pie plot for emotions' distribution 

number_tweets_per_day = data.groupby(['date', 'emotion']).agg({'id': 'count'}).reset_index()

number_tweets_per_day["tweet_date"] = pd.to_datetime(number_tweets_per_day["date"])

time_fig = px.line(number_tweets_per_day, x = 'tweet_date', y = 'id', labels = {'id': 'count'}, color = 'emotion', 
                  color_discrete_sequence=px.colors.qualitative.G10)

# create a lineplot for emotions 

sentiment_counts = data.groupby('emotion').agg({'id' : 'size'}).reset_index()
sentiment_counts.rename(columns = {'id':'count'}, inplace = True)
sent_fig = px.pie(sentiment_counts, values='count', names='emotion', title='Tweets within each emotion', labels = {'id': 'count'}, 
                 color_discrete_sequence=px.colors.qualitative.G10)
sent_fig

def display_plot(image_choice):
    
    if image_choice == 'Sentiment distribution':
        return sent_fig
    
    elif image_choice == 'Time series':
        return time_fig
    
    elif image_choice == 'Word clouds':
        return wc_fig
    
def display_freq_plot(choice, *args):
    
    user_keys = [arg for arg in args]
    
    # clean input strings to match keywords in the database
    keyword = []
    for key in user_keys:
        keyword.append(format_input(key, it_stop))
        
    if choice == "TFIDF":
        return plot_time_series(ser_TFIDF, keyword, user_keys)
   
    elif choice == "Whole_text":
        return plot_time_series(ser_whole_text, keyword, user_keys)
    
def display_output(tweet_index):
    topics = "<ol>\
    <li>Discussion about scientific studies</li>\
    <li>Anxiety about pandemic and the information about it OR Specific people in the context of LC</li>\
    <li>Discussion about LC impact in terms of time periods</li>\
    <li>Discussion about LC impact on patient life (impact on life so far or scope for lifelong impact)</li>\
    <li>Treatment scenario</li>\
    <li>Impact/Consequences of LC on children</li>\
    </ol>"
    item = topic_dist_list[tweet_index]
    distribution = f'<html><body><h3>Topics Distribution</h3>({item[0][0]+1}, {item[0][1]}), ({item[1][0]+1}, {item[1][1]}), ({item[2][0]+1}, {item[2][1]}), ({item[3][0]+1}, {item[3][1]}), ({item[4][0]+1}, {item[4][1]}), ({item[5][0]+1}, {item[5][1]})\
    </body></html>'
    return gr.HTML.update(distribution, visible=True)

def display_output_Q2_Q4(tweet_index):
    item = topic_dist_list_Q2_Q4[tweet_index]
    distribution = f'<html><body><h3>Topics Distribution</h3>({item[0][0]+1}, {item[0][1]}), ({item[1][0]+1}, {item[1][1]}), ({item[2][0]+1}, {item[2][1]}), ({item[3][0]+1}, {item[3][1]}), ({item[4][0]+1}, {item[4][1]}), ({item[5][0]+1}, {item[5][1]})\
    </body></html>'
    return gr.HTML.update(distribution, visible=True)

# with gr.Blocks() as demo:
#     gr.Markdown("## Choose your adventure")
    
#     with gr.Tabs():
        
#         with gr.TabItem("Topic modeling"):
#             gr.Markdown("Nothing here yet")

#         with gr.TabItem("Word frequency"):

#             inputs =  [gr.Radio(choices = ['TFIDF', 'Whole_text'], label = 'Choose ur method'), 
#                       gr.Textbox(label = 'word 1'),
#                       gr.Textbox(label = 'word 2'),
#                       gr.Textbox(label = 'word 3'),
#                       gr.Textbox(label = 'word 4')]
#             plot_output = gr.Plot(elem_id = 1)
#             freq_button = gr.Button("Submit")
            

#         with gr.TabItem("Sentiment analysis"):
#             text_input =  gr.Radio(choices = ['Sentiment distribution', 'Word clouds', 'Time series'], label = 'Choose ur plot')
#             sent_plot = gr.Plot()
#             sent_button = gr.Button("Submit")          
            
        
#     sent_button.click(display_plot, inputs=text_input, outputs= sent_plot)
#     freq_button.click(display_freq_plot, inputs=inputs, outputs=plot_output)


with gr.Blocks() as demo:
    gr.Markdown("## Choose your adventure")
    
    with gr.Tabs():
        
        with gr.TabItem("Topic modeling"):
             gr.Markdown(
                """
            ## <div style="text-align: center;">Topic modeling analysis on Twitter</div>
            """
            )
             with gr.Tabs():
                 with gr.TabItem("July-Semptember 2021"):
                     with gr.Row():
                         gr.Image("./wordclouds_Q1 data.png", label="July-September 2021")



                     tweets_list = ['C\'è uno studio a riguardo condotto proprio sui più giovani che identifica il long covid alla stregua di ogni strascico di malattie infettive polmonari. Il long covid è dannoso come una polmonite in quanto a effetti a lungo termine.  Se lo ritrovo te lo passo, ora sono fuori...',
                    'Mio cugino è guarito dal covid dopo 4 mesi di ospedale,  di cui  più di 2 intubato, grazie alla testardaggine dei medici che hanno fatto di tutto per salvargli la vita a 57 anni. Ora è nella fase long covid per recuperare i danni fisici riportati',
                    'È importante parlare di #LongCovid e sensibilizzare tutti, giovani compresi, che non è un gioco ma una malattia debilitante/invalidante che può stravolgere la vita. Io 39 anni e #LongCovid da 18 mesi (con 4 figli piccoli). #countlongcovid',
                    'Il Long Covid è una diretta conseguenza di quelli che nei primi tempi sono stati abbandonati a se stessi giorni e giorni e curati solo quando molto aggravati, in ospedale. Se ti curi tempestivamente non hai nessuna conseguenza.',
                    'Non sai di cosa parli sono stato un mese attaccato ad un respiratore e sono salvo per miracolo. Ma questo è niente in confronto con il #LongCovid che mi porto dietro da mesi e mesi. Siete dei criminali a pensare ch\'è meglio curare che prevenire. Dei pazzi da rinchiudere',
                    'A chi dice ""Il COVID è innocuo per i bambini"".   Oltre ad alcuni decessi 500+ bambini sono morti di COVID negli USA 2020)  c\'è #LongCOVID.  Se ne parla in questo studio:   ""Studio inglese rileva che il COVID a lungo colpisce fino a 1 bambino su 7 mesi dopo l\'infezione']

                     q1_data_topic_list=['0. Discussion about scientific studies','1. Anxiety about pandemic and the information about it OR Specific people in the context of LC',
                    '2. Discussion about LC impact in terms of time periods','3. Discussion about LC impact on patient life (impact on life so far or scope for lifelong impact)' ,
                    '4. Treatment scenario', '5. Impact/Consequences of LC on children']


                     topic_dist_list=[[(0, 0.2181524), (1, 0.13380228), (2, 0.021277282), (3, 0.48123622), (4, 0.01883339), (5, 0.12669843)],
                    [(0, 0.0145399235), (1, 0.01287178), (2, 0.43158862), (3, 0.24750596), (4, 0.264914), (5, 0.028579665)],
                    [(0, 0.016303344), (1, 0.014450405), (2, 0.36162496), (3, 0.48426068), (4, 0.023487965), (5, 0.09987263)],
                    [(0, 0.018612841), (1, 0.016472807), (2, 0.44922927), (3, 0.033633586), (4, 0.026889767), (5, 0.45516175)],
                    [(0, 0.016305258), (1, 0.014453228), (2, 0.7628153), (3, 0.029092493), (4, 0.14613572), (5, 0.031198042)],
                    [(0, 0.016303508), (1, 0.014449066), (2, 0.15605325), (3, 0.029179793), (4, 0.023376595), (5, 0.7606378)]]

                     topics = '<html><body>\
                        <h3><b>Topics July to Sept, 2021</b></h3>\
                        <ol type="1">\
                        <li>1. Discussion about scientific studies</li>\
                        <li>2. Anxiety about pandemic and the information about it OR Specific people in the context of LC</li>\
                        <li>3. Discussion about LC impact in terms of time periods</li>\
                        <li>4. Discussion about LC impact on patient life (impact on life so far or scope for lifelong impact)</li>\
                        <li>5. Treatment scenario</li>\
                        <li>6. Impact/Consequences of LC on children</li>\
                        </ol>\
                        </body></html>'

                     Q1_topics = gr.HTML(topics, visible=True)

                     gr.Markdown(
                        """
                    ### Test our topic modeling model : select a tweet and check the topics distribution ! 
                    """
                    )

                     tweet = gr.Dropdown(tweets_list, label="Example tweets", interactive=True, type="index")

                     model_output = gr.HTML("", visible=False)
                     tweet.change(display_output, tweet, model_output)

                 with gr.TabItem("October 2021-July 2022"):

                     topic_dist_list_Q2_Q4=[[(0, 0.4377157), (1, 0.05924045), (2, 0.1525337), (3, 0.1941842), (4, 0.075339705), (5, 0.08098622)],
                    [(0, 0.16064012), (1, 0.063850455), (2, 0.08664099), (3, 0.2870743), (4, 0.081202514), (5, 0.32059166)],
                    [(0, 0.14904374), (1, 0.059243646), (2, 0.08039133), (3, 0.26638654), (4, 0.07534457), (5, 0.36959016)],
                    [(0, 0.14897935), (1, 0.059245925), (2, 0.08039324), (3, 0.41068354), (4, 0.14752874), (5, 0.15316921)],
                    [(0, 0.089826144), (1, 0.069229595), (2, 0.09393969), (3, 0.5643193), (4, 0.08804329), (5, 0.09464199)],
                    [(0, 0.08284077), (1, 0.29718927), (2, 0.08663448), (3, 0.36485678), (4, 0.08119658), (5, 0.08728213)]]

                     with gr.Row():
                            gr.Image("./wordclouds_Q2-Q2 data.png", label="October 2021-July 2022")

                     Q2_Q4_topics = '<html><body>\
                            <h3><b>Topics October 2021 to July 2022</b></h3>\
                            <ol type="1">\
                            <li>1. Variants</li>\
                            <li>2. Vaccine side-effects (and general anti-vax/ anti-LC narrative)</li>\
                            <li>3. Aftermath of LC or vaccine</li>\
                            <li>4. Impact of LC in terms of time OR Risks/Symptoms of LC</li>\
                            <li>5.  Anger or anxiety about LC information</li>\
                            <li>6. Discussion or Information about the science/knowledge surrounding LC</li>\
                            </ol>\
                            </body></html>'


                     Q2_Q4_topics_html = gr.HTML(Q2_Q4_topics, visible=True)

                     tweet_list_Q2_Q4=["Omicron e Long Covid: palpitazioni e perdita d'udito tra i sintomi - #Omicron #Covid: #palpitazioni ", 
                    'Long Covid e trombosi. La correlazione è spiegata da Giovanni Esposito, Presidente GISE, in un articolo sul sito  https://t.co/8TdI9nhDHY e avvalorata da uno studio svedese pubblicato sul British Medical Journal.  https://t.co/UebaXUtfbz',
                    'Peccato che il ""long COVID"" che è proprio ciò di cui parla l\'esimio dottore citato determini una alterazione o soppressione del sistema immunitario di cui si sa ancora poco ma che può portare a conseguenze fatali per il paziente.',
                    'Il Long covid rappresentava un problema solo fino ad aprile 2021, i vaccini hanno molto ridotto l\'impatto e la gravità delle patologie a lungo termine, in pratica si può dire che il long covid non esiste più',
                    'Sicuro, 100-150 morti al giorno, 6 ondate l anno, rischio long covid, rischio evoluzionario, e via dicendo — finitissimo',
                    'le cure le fai giorno dopo giorno... ci sono casi di long-covid dopo 6 mesi dall\'infezione. [Vaccino > >Cure] è un dato di fatto',
                    'A parte il rischio di sviluppare il #longcovid, il pericolo grave di lasciar circolare il virus e di farlo diventare endemico come preconizza il governo e lo sciagurato #speranza non è nel decorso del singolo caso ma nell\'aumento proporzionale dell\'insorgere di nuove varianti']

                     gr.Markdown(
                        """
                    ### Test our topic modeling model : select a tweet and check the topics distribution ! 
                    """
                    )

                     tweet_Q2_Q4 = gr.Dropdown(tweet_list_Q2_Q4, label="Example tweets", interactive=True, type="index")

                     model_output_Q2_Q4 = gr.HTML("", visible=False)
                     tweet_Q2_Q4.change(display_output_Q2_Q4, tweet_Q2_Q4, model_output_Q2_Q4)
        with gr.TabItem("Word frequency"):

            inputs =  [gr.Radio(choices = ['TFIDF', 'Whole_text'], label = 'Choose ur method'), 
                      gr.Textbox(label = 'word 1'),
                      gr.Textbox(label = 'word 2'),
                      gr.Textbox(label = 'word 3')]
            plot_output = gr.Plot()
            freq_button = gr.Button("Submit")

            freq_button.click(display_freq_plot, inputs=inputs, outputs=plot_output)
            gr.Examples(
              examples= [['TFIDF', 'Stanchezza', "l'età", '#LongCovidKids'], ['Whole_text', 'nebbia mentale', 'mal di testa', 'Ansia']], 
              inputs= inputs)

        with gr.TabItem("Sentiment analysis"):
            text_input =  gr.Radio(choices = ['Sentiment distribution', 'Word clouds', 'Time series'], label = 'Choose ur plot')
            sent_plot = gr.Plot()
            sent_button = gr.Button("Submit")          

            sent_button.click(display_plot, inputs=text_input, outputs= sent_plot)


demo.launch(debug=True, show_error = True);