Spaces:
Runtime error
Runtime error
File size: 19,247 Bytes
571d313 102b824 571d313 102b824 76612b7 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 571d313 102b824 76612b7 102b824 571d313 102b824 571d313 102b824 571d313 76612b7 488d437 76612b7 102b824 76612b7 102b824 76612b7 5b65304 8266d1c 102b824 f861c07 102b824 4f82b3b 76612b7 9943afd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.express as px
from stop_words import get_stop_words
from wordcloud import WordCloud
from datasets import load_dataset
import re
## import data
dataset = load_dataset("Santarabantoosoo/italian_long_covid_tweets")
data = pd.DataFrame.from_dict(dataset["train"])
# load stop words
it_stop_words = load_dataset("Santarabantoosoo/italian-stopwords")
it_stop = pd.DataFrame.from_dict(it_stop_words["train"])
it_stop = it_stop.text.to_list()
## Optimize stop words according to Luca's repo
def format_input(user_key, stopwords):
'''
format user input request to lookup in the database of frequencies
input:
user_key is a string
stopwords is a list of strings
output:
key is a string
'''
key = user_key.lower()
key = re.sub(r'[^\w\s]', ' ', key)
key = ' '.join([el for el in key.split() if not (el in stopwords)])
return key
### Loading TFIDF
TFIDF_21_Jul_Oct = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_21_Jul_Oct")
TFIDF_22_Feb_Apr = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_22_Feb_Apr")
TFIDF_22_May_Jul = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_22_May_Jul")
TFIDF_21_Nov_22_Jan = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_21_Nov_22_Jan")
## Loading whole_text
whole_text_21_Jul_Oct = load_dataset("Santarabantoosoo/whole_text_TF_21_Jul_Oct")
whole_text_22_Feb_Apr = load_dataset("Santarabantoosoo/whole_text_TF_22_Feb_Apr")
whole_text_22_May_Jul = load_dataset("Santarabantoosoo/whole_text_TF_22_May_Jul")
whole_text_21_Nov_22_Jan = load_dataset("Santarabantoosoo/whole_text_TF_21_Nov_22_Jan")
TFIDF_21_Jul_Oct = pd.DataFrame.from_dict(TFIDF_21_Jul_Oct["train"])
TFIDF_22_Feb_Apr = pd.DataFrame.from_dict(TFIDF_22_Feb_Apr["train"])
TFIDF_22_May_Jul = pd.DataFrame.from_dict(TFIDF_22_May_Jul["train"])
TFIDF_21_Nov_22_Jan = pd.DataFrame.from_dict(TFIDF_21_Nov_22_Jan["train"])
whole_text_21_Jul_Oct = pd.DataFrame.from_dict(whole_text_21_Jul_Oct["train"])
whole_text_22_Feb_Apr = pd.DataFrame.from_dict(whole_text_22_Feb_Apr["train"])
whole_text_22_May_Jul = pd.DataFrame.from_dict(whole_text_22_May_Jul["train"])
whole_text_21_Nov_22_Jan = pd.DataFrame.from_dict(whole_text_21_Nov_22_Jan["train"])
ser_TFIDF = []
ser_TFIDF.append(TFIDF_21_Jul_Oct.transpose()[0])
ser_TFIDF.append(TFIDF_22_Feb_Apr.transpose()[0])
ser_TFIDF.append(TFIDF_22_May_Jul.transpose()[0])
ser_TFIDF.append(TFIDF_21_Nov_22_Jan.transpose()[0])
ser_whole_text = []
ser_whole_text.append(whole_text_21_Jul_Oct.transpose()[0])
ser_whole_text.append(whole_text_22_Feb_Apr.transpose()[0])
ser_whole_text.append(whole_text_22_May_Jul.transpose()[0])
ser_whole_text.append(whole_text_21_Nov_22_Jan.transpose()[0])
def plot_time_series(choice, keyword, user_keys):
x = np.arange(2,10,2)
y = [[] for j in range(len(keyword))]
for j in range(len(keyword)):
i=0
while i < len(choice):
try:
y[j].append(choice[i][keyword[j]])
i += 1
except:
y[j].append(0.0)
i += 1
y[j] = np.array(y[j])
x_ticks_labels = ['Q1','Q2','Q3','Q4']
fig, ax = plt.subplots(1,1)
for j in range(len(keyword)):
ax.plot(x,y[j], label = user_keys[j].lower())
# Set number of ticks for x-axis
ax.set_xticks(x)
ax.set_xticklabels(x_ticks_labels, fontsize=12)
leg = plt.legend(loc='best')
plt.xlabel('Time')
plt.title("keywords quartely analysis (July 2021 - July 2022)")
plt.ylabel(f'Freq. from {user_keys}')
return fig
# Wordcloud with anger tweets
angry_tweets = data['tweet'][data["emotion"] == 'anger']
angry_tweets = angry_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
anger_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(angry_tweets))
# Wordcloud with sad tweets
sad_tweets = data['tweet'][data["emotion"] == 'sadness']
sad_tweets = sad_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
sad_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(sad_tweets))
# Wordcloud with joy tweets
joy_tweets = data['tweet'][data["emotion"] == 'joy']
joy_tweets = joy_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
joy_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(joy_tweets))
# Wordcloud with fear tweets
fear_tweets = data['tweet'][data["emotion"] == 'fear']
fear_tweets = fear_tweets.apply(format_input, args = [it_stop])
stop_words = ["https", 'http', "co", "RT"] + list(it_stop)
fear_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(fear_tweets))
## COmbine all plots in a single plot
wc_fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2)
# fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
wc_fig.tight_layout()
ax1.imshow(sad_wordcloud, interpolation="bilinear")
ax1.axis("off")
ax1.set_title('Sadness', {'fontsize': 30})
ax2.imshow(joy_wordcloud, interpolation="bilinear")
ax2.axis("off")
ax2.set_title('Joy', {'fontsize': 30})
ax3.imshow(fear_wordcloud, interpolation="bilinear")
ax3.axis("off")
ax3.set_title('Fear', {'fontsize': 30})
ax4.imshow(anger_wordcloud, interpolation="bilinear")
ax4.axis("off")
ax4.set_title('Anger', {'fontsize': 30})
# plot a pie plot for emotions' distribution
number_tweets_per_day = data.groupby(['date', 'emotion']).agg({'id': 'count'}).reset_index()
number_tweets_per_day["tweet_date"] = pd.to_datetime(number_tweets_per_day["date"])
time_fig = px.line(number_tweets_per_day, x = 'tweet_date', y = 'id', labels = {'id': 'count'}, color = 'emotion',
color_discrete_sequence=px.colors.qualitative.G10)
# create a lineplot for emotions
sentiment_counts = data.groupby('emotion').agg({'id' : 'size'}).reset_index()
sentiment_counts.rename(columns = {'id':'count'}, inplace = True)
sent_fig = px.pie(sentiment_counts, values='count', names='emotion', title='Tweets within each emotion', labels = {'id': 'count'},
color_discrete_sequence=px.colors.qualitative.G10)
sent_fig
def display_plot(image_choice):
if image_choice == 'Sentiment distribution':
return sent_fig
elif image_choice == 'Time series':
return time_fig
elif image_choice == 'Word clouds':
return wc_fig
def display_freq_plot(choice, *args):
user_keys = [arg for arg in args]
# clean input strings to match keywords in the database
keyword = []
for key in user_keys:
keyword.append(format_input(key, it_stop))
if choice == "TFIDF":
return plot_time_series(ser_TFIDF, keyword, user_keys)
elif choice == "Whole_text":
return plot_time_series(ser_whole_text, keyword, user_keys)
def display_output(tweet_index):
topics = "<ol>\
<li>Discussion about scientific studies</li>\
<li>Anxiety about pandemic and the information about it OR Specific people in the context of LC</li>\
<li>Discussion about LC impact in terms of time periods</li>\
<li>Discussion about LC impact on patient life (impact on life so far or scope for lifelong impact)</li>\
<li>Treatment scenario</li>\
<li>Impact/Consequences of LC on children</li>\
</ol>"
item = topic_dist_list[tweet_index]
distribution = f'<html><body><h3>Topics Distribution</h3>({item[0][0]+1}, {item[0][1]}), ({item[1][0]+1}, {item[1][1]}), ({item[2][0]+1}, {item[2][1]}), ({item[3][0]+1}, {item[3][1]}), ({item[4][0]+1}, {item[4][1]}), ({item[5][0]+1}, {item[5][1]})\
</body></html>'
return gr.HTML.update(distribution, visible=True)
def display_output_Q2_Q4(tweet_index):
item = topic_dist_list_Q2_Q4[tweet_index]
distribution = f'<html><body><h3>Topics Distribution</h3>({item[0][0]+1}, {item[0][1]}), ({item[1][0]+1}, {item[1][1]}), ({item[2][0]+1}, {item[2][1]}), ({item[3][0]+1}, {item[3][1]}), ({item[4][0]+1}, {item[4][1]}), ({item[5][0]+1}, {item[5][1]})\
</body></html>'
return gr.HTML.update(distribution, visible=True)
# with gr.Blocks() as demo:
# gr.Markdown("## Choose your adventure")
# with gr.Tabs():
# with gr.TabItem("Topic modeling"):
# gr.Markdown("Nothing here yet")
# with gr.TabItem("Word frequency"):
# inputs = [gr.Radio(choices = ['TFIDF', 'Whole_text'], label = 'Choose ur method'),
# gr.Textbox(label = 'word 1'),
# gr.Textbox(label = 'word 2'),
# gr.Textbox(label = 'word 3'),
# gr.Textbox(label = 'word 4')]
# plot_output = gr.Plot(elem_id = 1)
# freq_button = gr.Button("Submit")
# with gr.TabItem("Sentiment analysis"):
# text_input = gr.Radio(choices = ['Sentiment distribution', 'Word clouds', 'Time series'], label = 'Choose ur plot')
# sent_plot = gr.Plot()
# sent_button = gr.Button("Submit")
# sent_button.click(display_plot, inputs=text_input, outputs= sent_plot)
# freq_button.click(display_freq_plot, inputs=inputs, outputs=plot_output)
with gr.Blocks() as demo:
gr.Markdown("## Choose your adventure")
with gr.Tabs():
with gr.TabItem("Topic modeling"):
gr.Markdown(
"""
## <div style="text-align: center;">Topic modeling analysis on Twitter</div>
"""
)
with gr.Tabs():
with gr.TabItem("July-Semptember 2021"):
with gr.Row():
gr.Image("./wordclouds_Q1 data.png", label="July-September 2021")
tweets_list = ['C\'è uno studio a riguardo condotto proprio sui più giovani che identifica il long covid alla stregua di ogni strascico di malattie infettive polmonari. Il long covid è dannoso come una polmonite in quanto a effetti a lungo termine. Se lo ritrovo te lo passo, ora sono fuori...',
'Mio cugino è guarito dal covid dopo 4 mesi di ospedale, di cui più di 2 intubato, grazie alla testardaggine dei medici che hanno fatto di tutto per salvargli la vita a 57 anni. Ora è nella fase long covid per recuperare i danni fisici riportati',
'È importante parlare di #LongCovid e sensibilizzare tutti, giovani compresi, che non è un gioco ma una malattia debilitante/invalidante che può stravolgere la vita. Io 39 anni e #LongCovid da 18 mesi (con 4 figli piccoli). #countlongcovid',
'Il Long Covid è una diretta conseguenza di quelli che nei primi tempi sono stati abbandonati a se stessi giorni e giorni e curati solo quando molto aggravati, in ospedale. Se ti curi tempestivamente non hai nessuna conseguenza.',
'Non sai di cosa parli sono stato un mese attaccato ad un respiratore e sono salvo per miracolo. Ma questo è niente in confronto con il #LongCovid che mi porto dietro da mesi e mesi. Siete dei criminali a pensare ch\'è meglio curare che prevenire. Dei pazzi da rinchiudere',
'A chi dice ""Il COVID è innocuo per i bambini"". Oltre ad alcuni decessi 500+ bambini sono morti di COVID negli USA 2020) c\'è #LongCOVID. Se ne parla in questo studio: ""Studio inglese rileva che il COVID a lungo colpisce fino a 1 bambino su 7 mesi dopo l\'infezione']
q1_data_topic_list=['0. Discussion about scientific studies','1. Anxiety about pandemic and the information about it OR Specific people in the context of LC',
'2. Discussion about LC impact in terms of time periods','3. Discussion about LC impact on patient life (impact on life so far or scope for lifelong impact)' ,
'4. Treatment scenario', '5. Impact/Consequences of LC on children']
topic_dist_list=[[(0, 0.2181524), (1, 0.13380228), (2, 0.021277282), (3, 0.48123622), (4, 0.01883339), (5, 0.12669843)],
[(0, 0.0145399235), (1, 0.01287178), (2, 0.43158862), (3, 0.24750596), (4, 0.264914), (5, 0.028579665)],
[(0, 0.016303344), (1, 0.014450405), (2, 0.36162496), (3, 0.48426068), (4, 0.023487965), (5, 0.09987263)],
[(0, 0.018612841), (1, 0.016472807), (2, 0.44922927), (3, 0.033633586), (4, 0.026889767), (5, 0.45516175)],
[(0, 0.016305258), (1, 0.014453228), (2, 0.7628153), (3, 0.029092493), (4, 0.14613572), (5, 0.031198042)],
[(0, 0.016303508), (1, 0.014449066), (2, 0.15605325), (3, 0.029179793), (4, 0.023376595), (5, 0.7606378)]]
topics = '<html><body>\
<h3><b>Topics July to Sept, 2021</b></h3>\
<ol type="1">\
<li>1. Discussion about scientific studies</li>\
<li>2. Anxiety about pandemic and the information about it OR Specific people in the context of LC</li>\
<li>3. Discussion about LC impact in terms of time periods</li>\
<li>4. Discussion about LC impact on patient life (impact on life so far or scope for lifelong impact)</li>\
<li>5. Treatment scenario</li>\
<li>6. Impact/Consequences of LC on children</li>\
</ol>\
</body></html>'
Q1_topics = gr.HTML(topics, visible=True)
gr.Markdown(
"""
### Test our topic modeling model : select a tweet and check the topics distribution !
"""
)
tweet = gr.Dropdown(tweets_list, label="Example tweets", interactive=True, type="index")
model_output = gr.HTML("", visible=False)
tweet.change(display_output, tweet, model_output)
with gr.TabItem("October 2021-July 2022"):
topic_dist_list_Q2_Q4=[[(0, 0.4377157), (1, 0.05924045), (2, 0.1525337), (3, 0.1941842), (4, 0.075339705), (5, 0.08098622)],
[(0, 0.16064012), (1, 0.063850455), (2, 0.08664099), (3, 0.2870743), (4, 0.081202514), (5, 0.32059166)],
[(0, 0.14904374), (1, 0.059243646), (2, 0.08039133), (3, 0.26638654), (4, 0.07534457), (5, 0.36959016)],
[(0, 0.14897935), (1, 0.059245925), (2, 0.08039324), (3, 0.41068354), (4, 0.14752874), (5, 0.15316921)],
[(0, 0.089826144), (1, 0.069229595), (2, 0.09393969), (3, 0.5643193), (4, 0.08804329), (5, 0.09464199)],
[(0, 0.08284077), (1, 0.29718927), (2, 0.08663448), (3, 0.36485678), (4, 0.08119658), (5, 0.08728213)]]
with gr.Row():
gr.Image("./wordclouds_Q2-Q2 data.png", label="October 2021-July 2022")
Q2_Q4_topics = '<html><body>\
<h3><b>Topics October 2021 to July 2022</b></h3>\
<ol type="1">\
<li>1. Variants</li>\
<li>2. Vaccine side-effects (and general anti-vax/ anti-LC narrative)</li>\
<li>3. Aftermath of LC or vaccine</li>\
<li>4. Impact of LC in terms of time OR Risks/Symptoms of LC</li>\
<li>5. Anger or anxiety about LC information</li>\
<li>6. Discussion or Information about the science/knowledge surrounding LC</li>\
</ol>\
</body></html>'
Q2_Q4_topics_html = gr.HTML(Q2_Q4_topics, visible=True)
tweet_list_Q2_Q4=["Omicron e Long Covid: palpitazioni e perdita d'udito tra i sintomi - #Omicron #Covid: #palpitazioni ",
'Long Covid e trombosi. La correlazione è spiegata da Giovanni Esposito, Presidente GISE, in un articolo sul sito https://t.co/8TdI9nhDHY e avvalorata da uno studio svedese pubblicato sul British Medical Journal. https://t.co/UebaXUtfbz',
'Peccato che il ""long COVID"" che è proprio ciò di cui parla l\'esimio dottore citato determini una alterazione o soppressione del sistema immunitario di cui si sa ancora poco ma che può portare a conseguenze fatali per il paziente.',
'Il Long covid rappresentava un problema solo fino ad aprile 2021, i vaccini hanno molto ridotto l\'impatto e la gravità delle patologie a lungo termine, in pratica si può dire che il long covid non esiste più',
'Sicuro, 100-150 morti al giorno, 6 ondate l anno, rischio long covid, rischio evoluzionario, e via dicendo — finitissimo',
'le cure le fai giorno dopo giorno... ci sono casi di long-covid dopo 6 mesi dall\'infezione. [Vaccino > >Cure] è un dato di fatto',
'A parte il rischio di sviluppare il #longcovid, il pericolo grave di lasciar circolare il virus e di farlo diventare endemico come preconizza il governo e lo sciagurato #speranza non è nel decorso del singolo caso ma nell\'aumento proporzionale dell\'insorgere di nuove varianti']
gr.Markdown(
"""
### Test our topic modeling model : select a tweet and check the topics distribution !
"""
)
tweet_Q2_Q4 = gr.Dropdown(tweet_list_Q2_Q4, label="Example tweets", interactive=True, type="index")
model_output_Q2_Q4 = gr.HTML("", visible=False)
tweet_Q2_Q4.change(display_output_Q2_Q4, tweet_Q2_Q4, model_output_Q2_Q4)
with gr.TabItem("Word frequency"):
inputs = [gr.Radio(choices = ['TFIDF', 'Whole_text'], label = 'Choose ur method'),
gr.Textbox(label = 'word 1'),
gr.Textbox(label = 'word 2'),
gr.Textbox(label = 'word 3')]
plot_output = gr.Plot()
freq_button = gr.Button("Submit")
freq_button.click(display_freq_plot, inputs=inputs, outputs=plot_output)
gr.Examples(
examples= [['TFIDF', 'Stanchezza', "l'età", '#LongCovidKids'], ['Whole_text', 'nebbia mentale', 'mal di testa', 'Ansia']],
inputs= inputs)
with gr.TabItem("Sentiment analysis"):
text_input = gr.Radio(choices = ['Sentiment distribution', 'Word clouds', 'Time series'], label = 'Choose ur plot')
sent_plot = gr.Plot()
sent_button = gr.Button("Submit")
sent_button.click(display_plot, inputs=text_input, outputs= sent_plot)
demo.launch(debug=True, show_error = True);
|