Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import plotly.express as px | |
from stop_words import get_stop_words | |
from wordcloud import WordCloud | |
from datasets import load_dataset | |
import re | |
## import data | |
dataset = load_dataset("Santarabantoosoo/italian_long_covid_tweets") | |
data = pd.DataFrame.from_dict(dataset["train"]) | |
# load stop words | |
it_stop_words = load_dataset("Santarabantoosoo/italian-stopwords") | |
it_stop = pd.DataFrame.from_dict(it_stop_words["train"]) | |
it_stop = it_stop.text.to_list() | |
## Optimize stop words according to Luca's repo | |
def format_input(user_key, stopwords): | |
''' | |
format user input request to lookup in the database of frequencies | |
input: | |
user_key is a string | |
stopwords is a list of strings | |
output: | |
key is a string | |
''' | |
key = user_key.lower() | |
key = re.sub(r'[^\w\s]', ' ', key) | |
key = ' '.join([el for el in key.split() if not (el in stopwords)]) | |
return key | |
### Loading TFIDF | |
TFIDF_21_Jul_Oct = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_21_Jul_Oct") | |
TFIDF_22_Feb_Apr = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_22_Feb_Apr") | |
TFIDF_22_May_Jul = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_22_May_Jul") | |
TFIDF_21_Nov_22_Jan = load_dataset("Santarabantoosoo/Long_Covid_word_frequency_TFIDF_21_Nov_22_Jan") | |
## Loading whole_text | |
whole_text_21_Jul_Oct = load_dataset("Santarabantoosoo/whole_text_TF_21_Jul_Oct") | |
whole_text_22_Feb_Apr = load_dataset("Santarabantoosoo/whole_text_TF_22_Feb_Apr") | |
whole_text_22_May_Jul = load_dataset("Santarabantoosoo/whole_text_TF_22_May_Jul") | |
whole_text_21_Nov_22_Jan = load_dataset("Santarabantoosoo/whole_text_TF_21_Nov_22_Jan") | |
TFIDF_21_Jul_Oct = pd.DataFrame.from_dict(TFIDF_21_Jul_Oct["train"]) | |
TFIDF_22_Feb_Apr = pd.DataFrame.from_dict(TFIDF_22_Feb_Apr["train"]) | |
TFIDF_22_May_Jul = pd.DataFrame.from_dict(TFIDF_22_May_Jul["train"]) | |
TFIDF_21_Nov_22_Jan = pd.DataFrame.from_dict(TFIDF_21_Nov_22_Jan["train"]) | |
whole_text_21_Jul_Oct = pd.DataFrame.from_dict(whole_text_21_Jul_Oct["train"]) | |
whole_text_22_Feb_Apr = pd.DataFrame.from_dict(whole_text_22_Feb_Apr["train"]) | |
whole_text_22_May_Jul = pd.DataFrame.from_dict(whole_text_22_May_Jul["train"]) | |
whole_text_21_Nov_22_Jan = pd.DataFrame.from_dict(whole_text_21_Nov_22_Jan["train"]) | |
ser_TFIDF = [] | |
ser_TFIDF.append(TFIDF_21_Jul_Oct.transpose()[0]) | |
ser_TFIDF.append(TFIDF_22_Feb_Apr.transpose()[0]) | |
ser_TFIDF.append(TFIDF_22_May_Jul.transpose()[0]) | |
ser_TFIDF.append(TFIDF_21_Nov_22_Jan.transpose()[0]) | |
ser_whole_text = [] | |
ser_whole_text.append(whole_text_21_Jul_Oct.transpose()[0]) | |
ser_whole_text.append(whole_text_22_Feb_Apr.transpose()[0]) | |
ser_whole_text.append(whole_text_22_May_Jul.transpose()[0]) | |
ser_whole_text.append(whole_text_21_Nov_22_Jan.transpose()[0]) | |
def plot_time_series(choice, keyword, user_keys): | |
x = np.arange(2,10,2) | |
y = [[] for j in range(len(keyword))] | |
for j in range(len(keyword)): | |
i=0 | |
while i < len(choice): | |
try: | |
y[j].append(choice[i][keyword[j]]) | |
i += 1 | |
except: | |
y[j].append(0.0) | |
i += 1 | |
y[j] = np.array(y[j]) | |
x_ticks_labels = ['Q1','Q2','Q3','Q4'] | |
fig, ax = plt.subplots(1,1) | |
for j in range(len(keyword)): | |
ax.plot(x,y[j], label = user_keys[j].lower()) | |
# Set number of ticks for x-axis | |
ax.set_xticks(x) | |
ax.set_xticklabels(x_ticks_labels, fontsize=12) | |
leg = plt.legend(loc='best') | |
plt.xlabel('Time') | |
plt.title("keywords quartely analysis (July 2021 - July 2022)") | |
plt.ylabel(f'Freq. from {user_choice}') | |
return fig | |
# Wordcloud with anger tweets | |
angry_tweets = data['tweet'][data["emotion"] == 'anger'] | |
angry_tweets = angry_tweets.apply(format_input, args = [it_stop]) | |
stop_words = ["https", 'http', "co", "RT"] + list(it_stop) | |
anger_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(angry_tweets)) | |
# Wordcloud with sad tweets | |
sad_tweets = data['tweet'][data["emotion"] == 'sadness'] | |
sad_tweets = sad_tweets.apply(format_input, args = [it_stop]) | |
stop_words = ["https", 'http', "co", "RT"] + list(it_stop) | |
sad_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(sad_tweets)) | |
# Wordcloud with joy tweets | |
joy_tweets = data['tweet'][data["emotion"] == 'joy'] | |
joy_tweets = joy_tweets.apply(format_input, args = [it_stop]) | |
stop_words = ["https", 'http', "co", "RT"] + list(it_stop) | |
joy_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(joy_tweets)) | |
# Wordcloud with fear tweets | |
fear_tweets = data['tweet'][data["emotion"] == 'fear'] | |
fear_tweets = fear_tweets.apply(format_input, args = [it_stop]) | |
stop_words = ["https", 'http', "co", "RT"] + list(it_stop) | |
fear_wordcloud = WordCloud(max_font_size=50, max_words=50, background_color="white", stopwords = stop_words).generate(str(fear_tweets)) | |
## COmbine all plots in a single plot | |
wc_fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2) | |
# fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) | |
wc_fig.tight_layout() | |
ax1.imshow(sad_wordcloud, interpolation="bilinear") | |
ax1.axis("off") | |
ax1.set_title('Sadness', {'fontsize': 30}) | |
ax2.imshow(joy_wordcloud, interpolation="bilinear") | |
ax2.axis("off") | |
ax2.set_title('Joy', {'fontsize': 30}) | |
ax3.imshow(fear_wordcloud, interpolation="bilinear") | |
ax3.axis("off") | |
ax3.set_title('Fear', {'fontsize': 30}) | |
ax4.imshow(anger_wordcloud, interpolation="bilinear") | |
ax4.axis("off") | |
ax4.set_title('Anger', {'fontsize': 30}) | |
# plot a pie plot for emotions' distribution | |
number_tweets_per_day = data.groupby(['date', 'emotion']).agg({'id': 'count'}).reset_index() | |
number_tweets_per_day["tweet_date"] = pd.to_datetime(number_tweets_per_day["date"]) | |
time_fig = px.line(number_tweets_per_day, x = 'tweet_date', y = 'id', labels = {'id': 'count'}, color = 'emotion', | |
color_discrete_sequence=px.colors.qualitative.G10) | |
# create a lineplot for emotions | |
sentiment_counts = data.groupby('emotion').agg({'id' : 'size'}).reset_index() | |
sentiment_counts.rename(columns = {'id':'count'}, inplace = True) | |
sent_fig = px.pie(sentiment_counts, values='count', names='emotion', title='Tweets within each emotion', labels = {'id': 'count'}, | |
color_discrete_sequence=px.colors.qualitative.G10) | |
sent_fig | |
def display_plot(image_choice): | |
if image_choice == 'Sentiment distribution': | |
return sent_fig | |
elif image_choice == 'Time series': | |
return time_fig | |
elif image_choice == 'Word clouds': | |
return wc_fig | |
def display_freq_plot(choice, *args): | |
user_keys = [arg for arg in args] | |
# clean input strings to match keywords in the database | |
keyword = [] | |
for key in user_keys: | |
keyword.append(format_input(key, it_stop)) | |
if choice == "TFIDF": | |
return plot_time_series(ser_TFIDF, keyword, user_keys) | |
elif choice == "Whole_text": | |
return plot_time_series(ser_whole_text, keyword, user_keys) | |
with gr.Blocks() as demo: | |
gr.Markdown("## Choose your adventure") | |
with gr.Tabs(): | |
with gr.TabItem("Topic modeling"): | |
gr.Markdown("Nothing here yet") | |
with gr.TabItem("Word frequency"): | |
inputs = [gr.Radio(choices = ['TFIDF', 'Whole_text'], label = 'Choose ur method'), | |
gr.Textbox(label = 'word 1'), | |
gr.Textbox(label = 'word 2'), | |
gr.Textbox(label = 'word 3'), | |
gr.Textbox(label = 'word 4')] | |
plot_output = gr.Plot(elem_id = 1) | |
freq_button = gr.Button("Submit") | |
freq_button.click(display_freq_plot, inputs=inputs, outputs=plot_output) | |
with gr.TabItem("Sentiment analysis"): | |
text_input = gr.Radio(choices = ['Sentiment distribution', 'Word clouds', 'Time series'], label = 'Choose ur plot') | |
sent_plot = gr.Plot() | |
sent_button = gr.Button("Submit") | |
sent_button.click(display_plot, inputs=text_input, outputs= sent_plot) | |
demo.launch(debug=True, show_error = True); | |