# %% import gradio as gr import tensorflow as tf import numpy as np import pandas as pd # %% model_path = "kia_apartment_keras_model.keras" model = tf.keras.models.load_model(model_path) df_bfs_data = pd.read_csv('bfs_municipality_and_tax_data.csv', sep=',', encoding='utf-8') df_bfs_data['tax_income'] = df_bfs_data['tax_income'].str.replace("'", "").astype(float) # %% locations = { "Zürich": 261, "Kloten": 62, "Uster": 198, "Illnau-Effretikon": 296, "Feuerthalen": 27, "Pfäffikon": 177, "Ottenbach": 11, "Dübendorf": 191, "Richterswil": 138, "Maur": 195, "Embrach": 56, "Bülach": 53, "Winterthur": 230, "Oetwil am See": 157, "Russikon": 178, "Obfelden": 10, "Wald (ZH)": 120, "Niederweningen": 91, "Dällikon": 84, "Buchs (ZH)": 83, "Rüti (ZH)": 118, "Hittnau": 173, "Bassersdorf": 52, "Glattfelden": 58, "Opfikon": 66, "Hinwil": 117, "Regensberg": 95, "Langnau am Albis": 136, "Dietikon": 243, "Erlenbach (ZH)": 151, "Kappel am Albis": 6, "Stäfa": 158, "Zell (ZH)": 231, "Turbenthal": 228, "Oberglatt": 92, "Winkel": 72, "Volketswil": 199, "Kilchberg (ZH)": 135, "Wetzikon (ZH)": 121, "Zumikon": 160, "Weisslingen": 180, "Elsau": 219, "Hettlingen": 221, "Rüschlikon": 139, "Stallikon": 13, "Dielsdorf": 86, "Wallisellen": 69, "Dietlikon": 54, "Meilen": 156, "Wangen-Brüttisellen": 200, "Flaach": 28, "Regensdorf": 96, "Niederhasli": 90, "Bauma": 297, "Aesch (ZH)": 241, "Schlieren": 247, "Dürnten": 113, "Unterengstringen": 249, "Gossau (ZH)": 115, "Oberengstringen": 245, "Schleinikon": 98, "Aeugst am Albis": 1, "Rheinau": 38, "Höri": 60, "Rickenbach (ZH)": 225, "Rafz": 67, "Adliswil": 131, "Zollikon": 161, "Urdorf": 250, "Hombrechtikon": 153, "Birmensdorf (ZH)": 242, "Fehraltorf": 172, "Weiach": 102, "Männedorf": 155, "Küsnacht (ZH)": 154, "Hausen am Albis": 4, "Hochfelden": 59, "Fällanden": 193, "Greifensee": 194, "Mönchaltorf": 196, "Dägerlen": 214, "Thalheim an der Thur": 39, "Uetikon am See": 159, "Seuzach": 227, "Uitikon": 248, "Affoltern am Albis": 2, "Geroldswil": 244, "Niederglatt": 89, "Thalwil": 141, "Rorbas": 68, "Pfungen": 224, "Weiningen (ZH)": 251, "Bubikon": 112, "Neftenbach": 223, "Mettmenstetten": 9, "Otelfingen": 94, "Flurlingen": 29, "Stadel": 100, "Grüningen": 116, "Henggart": 31, "Dachsen": 25, "Bonstetten": 3, "Bachenbülach": 51, "Horgen": 295 } # %% # Define the core prediction function def predict_apartment(rooms, area, town): bfs_number = locations[town] df = df_bfs_data[df_bfs_data['bfs_number']==bfs_number] if len(df) != 1: # if there are more than two records with the same bfs_number reutrn -1 return -1 input_data = np.array([rooms, area, df['pop'].iloc[0], df['pop_dens'].iloc[0], df['frg_pct'].iloc[0], df['emp'].iloc[0], df['tax_income'].iloc[0]]) input_data = input_data.reshape(1, 7) prediction = model.predict(input_data) return float(np.round(prediction[0][0], 0)) # %% # Create the Gradio interface iface = gr.Interface( fn=predict_apartment, inputs=["number", "number", gr.Dropdown(choices=locations.keys(), label="Town", type="value")], outputs=gr.Number(), examples=[[4.5, 120, "Dietlikon"], [3.5, 60, "Winterthur"]] ) iface.launch() # %%