File size: 3,894 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#

import copy

import numpy as np

from common.mocap_dataset import MocapDataset
from common.skeleton import Skeleton

humaneva_skeleton = Skeleton(parents=[-1, 0, 1, 2, 3, 1, 5, 6, 0, 8, 9, 0, 11, 12, 1],
                             joints_left=[2, 3, 4, 8, 9, 10],
                             joints_right=[5, 6, 7, 11, 12, 13])

humaneva_cameras_intrinsic_params = [
    {
        'id': 'C1',
        'res_w': 640,
        'res_h': 480,
        'azimuth': 0,  # Only used for visualization
    },
    {
        'id': 'C2',
        'res_w': 640,
        'res_h': 480,
        'azimuth': -90,  # Only used for visualization
    },
    {
        'id': 'C3',
        'res_w': 640,
        'res_h': 480,
        'azimuth': 90,  # Only used for visualization
    },
]

humaneva_cameras_extrinsic_params = {
    'S1': [
        {
            'orientation': [0.424207, -0.4983646, -0.5802981, 0.4847012],
            'translation': [4062.227, 663.2477, 1528.397],
        },
        {
            'orientation': [0.6503354, -0.7481602, -0.0919284, 0.0941766],
            'translation': [844.8131, -3805.2092, 1504.9929],
        },
        {
            'orientation': [0.0664734, -0.0690535, 0.7416416, -0.6639132],
            'translation': [-797.67377, 3916.3174, 1433.6602],
        },
    ],
    'S2': [
        {
            'orientation': [0.4214752, -0.4961493, -0.5838273, 0.4851187],
            'translation': [4112.9121, 626.4929, 1545.2988],
        },
        {
            'orientation': [0.6501393, -0.7476588, -0.0954617, 0.0959808],
            'translation': [923.5740, -3877.9243, 1504.5518],
        },
        {
            'orientation': [0.0699353, -0.0712403, 0.7421637, -0.662742],
            'translation': [-781.4915, 3838.8853, 1444.9929],
        },
    ],
    'S3': [
        {
            'orientation': [0.424207, -0.4983646, -0.5802981, 0.4847012],
            'translation': [4062.2271, 663.2477, 1528.3970],
        },
        {
            'orientation': [0.6503354, -0.7481602, -0.0919284, 0.0941766],
            'translation': [844.8131, -3805.2092, 1504.9929],
        },
        {
            'orientation': [0.0664734, -0.0690535, 0.7416416, -0.6639132],
            'translation': [-797.6738, 3916.3174, 1433.6602],
        },
    ],
    'S4': [
        {},
        {},
        {},
    ],

}


class HumanEvaDataset(MocapDataset):
    def __init__(self, path):
        super().__init__(fps=60, skeleton=humaneva_skeleton)

        self._cameras = copy.deepcopy(humaneva_cameras_extrinsic_params)
        for cameras in self._cameras.values():
            for i, cam in enumerate(cameras):
                cam.update(humaneva_cameras_intrinsic_params[i])
                for k, v in cam.items():
                    if k not in ['id', 'res_w', 'res_h']:
                        cam[k] = np.array(v, dtype='float32')
                if 'translation' in cam:
                    cam['translation'] = cam['translation'] / 1000  # mm to meters

        for subject in list(self._cameras.keys()):
            data = self._cameras[subject]
            del self._cameras[subject]
            for prefix in ['Train/', 'Validate/', 'Unlabeled/Train/', 'Unlabeled/Validate/', 'Unlabeled/']:
                self._cameras[prefix + subject] = data

        # Load serialized dataset
        data = np.load(path)['positions_3d'].item()

        self._data = {}
        for subject, actions in data.items():
            self._data[subject] = {}
            for action_name, positions in actions.items():
                self._data[subject][action_name] = {
                    'positions': positions,
                    'cameras': self._cameras[subject],
                }