Spaces:
Running
Running
# Copyright (c) 2018-present, Facebook, Inc. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# | |
from itertools import zip_longest | |
import numpy as np | |
class ChunkedGenerator: | |
""" | |
Batched data generator, used for training. | |
The sequences are split into equal-length chunks and padded as necessary. | |
Arguments: | |
batch_size -- the batch size to use for training | |
cameras -- list of cameras, one element for each video (optional, used for semi-supervised training) | |
poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training) | |
poses_2d -- list of input 2D keypoints, one element for each video | |
chunk_length -- number of output frames to predict for each training example (usually 1) | |
pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field) | |
causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad") | |
shuffle -- randomly shuffle the dataset before each epoch | |
random_seed -- initial seed to use for the random generator | |
augment -- augment the dataset by flipping poses horizontally | |
kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled | |
joints_left and joints_right -- list of left/right 3D joints if flipping is enabled | |
""" | |
def __init__(self, batch_size, cameras, poses_3d, poses_2d, | |
chunk_length, pad=0, causal_shift=0, | |
shuffle=True, random_seed=1234, | |
augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None, | |
endless=False): | |
assert poses_3d is None or len(poses_3d) == len(poses_2d), (len(poses_3d), len(poses_2d)) | |
assert cameras is None or len(cameras) == len(poses_2d) | |
# Build lineage info | |
pairs = [] # (seq_idx, start_frame, end_frame, flip) tuples | |
for i in range(len(poses_2d)): | |
assert poses_3d is None or poses_3d[i].shape[0] == poses_3d[i].shape[0] | |
n_chunks = (poses_2d[i].shape[0] + chunk_length - 1) // chunk_length | |
offset = (n_chunks * chunk_length - poses_2d[i].shape[0]) // 2 | |
bounds = np.arange(n_chunks + 1) * chunk_length - offset | |
augment_vector = np.full(len(bounds - 1), False, dtype=bool) | |
pairs += zip(np.repeat(i, len(bounds - 1)), bounds[:-1], bounds[1:], augment_vector) | |
if augment: | |
pairs += zip(np.repeat(i, len(bounds - 1)), bounds[:-1], bounds[1:], ~augment_vector) | |
# Initialize buffers | |
if cameras is not None: | |
self.batch_cam = np.empty((batch_size, cameras[0].shape[-1])) | |
if poses_3d is not None: | |
self.batch_3d = np.empty((batch_size, chunk_length, poses_3d[0].shape[-2], poses_3d[0].shape[-1])) | |
self.batch_2d = np.empty((batch_size, chunk_length + 2 * pad, poses_2d[0].shape[-2], poses_2d[0].shape[-1])) | |
self.num_batches = (len(pairs) + batch_size - 1) // batch_size | |
self.batch_size = batch_size | |
self.random = np.random.RandomState(random_seed) | |
self.pairs = pairs | |
self.shuffle = shuffle | |
self.pad = pad | |
self.causal_shift = causal_shift | |
self.endless = endless | |
self.state = None | |
self.cameras = cameras | |
self.poses_3d = poses_3d | |
self.poses_2d = poses_2d | |
self.augment = augment | |
self.kps_left = kps_left | |
self.kps_right = kps_right | |
self.joints_left = joints_left | |
self.joints_right = joints_right | |
def num_frames(self): | |
return self.num_batches * self.batch_size | |
def random_state(self): | |
return self.random | |
def set_random_state(self, random): | |
self.random = random | |
def augment_enabled(self): | |
return self.augment | |
def next_pairs(self): | |
if self.state is None: | |
if self.shuffle: | |
pairs = self.random.permutation(self.pairs) | |
else: | |
pairs = self.pairs | |
return 0, pairs | |
else: | |
return self.state | |
def next_epoch(self): | |
enabled = True | |
while enabled: | |
start_idx, pairs = self.next_pairs() | |
for b_i in range(start_idx, self.num_batches): | |
chunks = pairs[b_i * self.batch_size: (b_i + 1) * self.batch_size] | |
for i, (seq_i, start_3d, end_3d, flip) in enumerate(chunks): | |
start_2d = start_3d - self.pad - self.causal_shift | |
end_2d = end_3d + self.pad - self.causal_shift | |
# 2D poses | |
seq_2d = self.poses_2d[seq_i] | |
low_2d = max(start_2d, 0) | |
high_2d = min(end_2d, seq_2d.shape[0]) | |
pad_left_2d = low_2d - start_2d | |
pad_right_2d = end_2d - high_2d | |
if pad_left_2d != 0 or pad_right_2d != 0: | |
self.batch_2d[i] = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)), 'edge') | |
else: | |
self.batch_2d[i] = seq_2d[low_2d:high_2d] | |
if flip: | |
# Flip 2D keypoints | |
self.batch_2d[i, :, :, 0] *= -1 | |
self.batch_2d[i, :, self.kps_left + self.kps_right] = self.batch_2d[i, :, self.kps_right + self.kps_left] | |
# 3D poses | |
if self.poses_3d is not None: | |
seq_3d = self.poses_3d[seq_i] | |
low_3d = max(start_3d, 0) | |
high_3d = min(end_3d, seq_3d.shape[0]) | |
pad_left_3d = low_3d - start_3d | |
pad_right_3d = end_3d - high_3d | |
if pad_left_3d != 0 or pad_right_3d != 0: | |
self.batch_3d[i] = np.pad(seq_3d[low_3d:high_3d], ((pad_left_3d, pad_right_3d), (0, 0), (0, 0)), 'edge') | |
else: | |
self.batch_3d[i] = seq_3d[low_3d:high_3d] | |
if flip: | |
# Flip 3D joints | |
self.batch_3d[i, :, :, 0] *= -1 | |
self.batch_3d[i, :, self.joints_left + self.joints_right] = \ | |
self.batch_3d[i, :, self.joints_right + self.joints_left] | |
# Cameras | |
if self.cameras is not None: | |
self.batch_cam[i] = self.cameras[seq_i] | |
if flip: | |
# Flip horizontal distortion coefficients | |
self.batch_cam[i, 2] *= -1 | |
self.batch_cam[i, 7] *= -1 | |
if self.endless: | |
self.state = (b_i + 1, pairs) | |
if self.poses_3d is None and self.cameras is None: | |
yield None, None, self.batch_2d[:len(chunks)] | |
elif self.poses_3d is not None and self.cameras is None: | |
yield None, self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)] | |
elif self.poses_3d is None: | |
yield self.batch_cam[:len(chunks)], None, self.batch_2d[:len(chunks)] | |
else: | |
yield self.batch_cam[:len(chunks)], self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)] | |
if self.endless: | |
self.state = None | |
else: | |
enabled = False | |
class UnchunkedGenerator: | |
""" | |
Non-batched data generator, used for testing. | |
Sequences are returned one at a time (i.e. batch size = 1), without chunking. | |
If data augmentation is enabled, the batches contain two sequences (i.e. batch size = 2), | |
the second of which is a mirrored version of the first. | |
Arguments: | |
cameras -- list of cameras, one element for each video (optional, used for semi-supervised training) | |
poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training) | |
poses_2d -- list of input 2D keypoints, one element for each video | |
pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field) | |
causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad") | |
augment -- augment the dataset by flipping poses horizontally | |
kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled | |
joints_left and joints_right -- list of left/right 3D joints if flipping is enabled | |
""" | |
def __init__(self, cameras, poses_3d, poses_2d, pad=0, causal_shift=0, | |
augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None): | |
assert poses_3d is None or len(poses_3d) == len(poses_2d) | |
assert cameras is None or len(cameras) == len(poses_2d) | |
self.augment = augment | |
self.kps_left = kps_left | |
self.kps_right = kps_right | |
self.joints_left = joints_left | |
self.joints_right = joints_right | |
self.pad = pad | |
self.causal_shift = causal_shift | |
self.cameras = [] if cameras is None else cameras | |
self.poses_3d = [] if poses_3d is None else poses_3d | |
self.poses_2d = poses_2d | |
def num_frames(self): | |
count = 0 | |
for p in self.poses_2d: | |
count += p.shape[0] | |
return count | |
def augment_enabled(self): | |
return self.augment | |
def set_augment(self, augment): | |
self.augment = augment | |
def next_epoch(self): | |
for seq_cam, seq_3d, seq_2d in zip_longest(self.cameras, self.poses_3d, self.poses_2d): | |
batch_cam = None if seq_cam is None else np.expand_dims(seq_cam, axis=0) | |
batch_3d = None if seq_3d is None else np.expand_dims(seq_3d, axis=0) | |
# 2D input padding to compensate for valid convolutions, per side (depends on the receptive field) | |
batch_2d = np.expand_dims(np.pad(seq_2d, | |
((self.pad + self.causal_shift, self.pad - self.causal_shift), (0, 0), (0, 0)), | |
'edge'), axis=0) | |
if self.augment: | |
# Append flipped version | |
if batch_cam is not None: | |
batch_cam = np.concatenate((batch_cam, batch_cam), axis=0) | |
batch_cam[1, 2] *= -1 | |
batch_cam[1, 7] *= -1 | |
if batch_3d is not None: | |
batch_3d = np.concatenate((batch_3d, batch_3d), axis=0) | |
batch_3d[1, :, :, 0] *= -1 | |
batch_3d[1, :, self.joints_left + self.joints_right] = batch_3d[1, :, self.joints_right + self.joints_left] | |
batch_2d = np.concatenate((batch_2d, batch_2d), axis=0) | |
batch_2d[1, :, :, 0] *= -1 | |
batch_2d[1, :, self.kps_left + self.kps_right] = batch_2d[1, :, self.kps_right + self.kps_left] | |
yield batch_cam, batch_3d, batch_2d | |
class Evaluate_Generator: | |
""" | |
Batched data generator, used for training. | |
The sequences are split into equal-length chunks and padded as necessary. | |
Arguments: | |
batch_size -- the batch size to use for training | |
cameras -- list of cameras, one element for each video (optional, used for semi-supervised training) | |
poses_3d -- list of ground-truth 3D poses, one element for each video (optional, used for supervised training) | |
poses_2d -- list of input 2D keypoints, one element for each video | |
chunk_length -- number of output frames to predict for each training example (usually 1) | |
pad -- 2D input padding to compensate for valid convolutions, per side (depends on the receptive field) | |
causal_shift -- asymmetric padding offset when causal convolutions are used (usually 0 or "pad") | |
shuffle -- randomly shuffle the dataset before each epoch | |
random_seed -- initial seed to use for the random generator | |
augment -- augment the dataset by flipping poses horizontally | |
kps_left and kps_right -- list of left/right 2D keypoints if flipping is enabled | |
joints_left and joints_right -- list of left/right 3D joints if flipping is enabled | |
""" | |
def __init__(self, batch_size, cameras, poses_3d, poses_2d, | |
chunk_length, pad=0, causal_shift=0, | |
shuffle=True, random_seed=1234, | |
augment=False, kps_left=None, kps_right=None, joints_left=None, joints_right=None, | |
endless=False): | |
assert poses_3d is None or len(poses_3d) == len(poses_2d), (len(poses_3d), len(poses_2d)) | |
assert cameras is None or len(cameras) == len(poses_2d) | |
# Build lineage info | |
pairs = [] # (seq_idx, start_frame, end_frame, flip) tuples | |
for i in range(len(poses_2d)): | |
assert poses_3d is None or poses_3d[i].shape[0] == poses_3d[i].shape[0] | |
n_chunks = (poses_2d[i].shape[0] + chunk_length - 1) // chunk_length | |
offset = (n_chunks * chunk_length - poses_2d[i].shape[0]) // 2 | |
bounds = np.arange(n_chunks + 1) * chunk_length - offset | |
augment_vector = np.full(len(bounds - 1), False, dtype=bool) | |
pairs += zip(np.repeat(i, len(bounds - 1)), bounds[:-1], bounds[1:], augment_vector) | |
# Initialize buffers | |
if cameras is not None: | |
self.batch_cam = np.empty((batch_size, cameras[0].shape[-1])) | |
if poses_3d is not None: | |
self.batch_3d = np.empty((batch_size, chunk_length, poses_3d[0].shape[-2], poses_3d[0].shape[-1])) | |
if augment: | |
self.batch_2d_flip = np.empty( | |
(batch_size, chunk_length + 2 * pad, poses_2d[0].shape[-2], poses_2d[0].shape[-1])) | |
self.batch_2d = np.empty((batch_size, chunk_length + 2 * pad, poses_2d[0].shape[-2], poses_2d[0].shape[-1])) | |
else: | |
self.batch_2d = np.empty((batch_size, chunk_length + 2 * pad, poses_2d[0].shape[-2], poses_2d[0].shape[-1])) | |
self.num_batches = (len(pairs) + batch_size - 1) // batch_size | |
self.batch_size = batch_size | |
self.random = np.random.RandomState(random_seed) | |
self.pairs = pairs | |
self.shuffle = shuffle | |
self.pad = pad | |
self.causal_shift = causal_shift | |
self.endless = endless | |
self.state = None | |
self.cameras = cameras | |
self.poses_3d = poses_3d | |
self.poses_2d = poses_2d | |
self.augment = augment | |
self.kps_left = kps_left | |
self.kps_right = kps_right | |
self.joints_left = joints_left | |
self.joints_right = joints_right | |
def num_frames(self): | |
return self.num_batches * self.batch_size | |
def random_state(self): | |
return self.random | |
def set_random_state(self, random): | |
self.random = random | |
def augment_enabled(self): | |
return self.augment | |
def next_pairs(self): | |
if self.state is None: | |
if self.shuffle: | |
pairs = self.random.permutation(self.pairs) | |
else: | |
pairs = self.pairs | |
return 0, pairs | |
else: | |
return self.state | |
def next_epoch(self): | |
enabled = True | |
while enabled: | |
start_idx, pairs = self.next_pairs() | |
for b_i in range(start_idx, self.num_batches): | |
chunks = pairs[b_i * self.batch_size: (b_i + 1) * self.batch_size] | |
for i, (seq_i, start_3d, end_3d, flip) in enumerate(chunks): | |
start_2d = start_3d - self.pad - self.causal_shift | |
end_2d = end_3d + self.pad - self.causal_shift | |
# 2D poses | |
seq_2d = self.poses_2d[seq_i] | |
low_2d = max(start_2d, 0) | |
high_2d = min(end_2d, seq_2d.shape[0]) | |
pad_left_2d = low_2d - start_2d | |
pad_right_2d = end_2d - high_2d | |
if pad_left_2d != 0 or pad_right_2d != 0: | |
self.batch_2d[i] = np.pad(seq_2d[low_2d:high_2d], ((pad_left_2d, pad_right_2d), (0, 0), (0, 0)), | |
'edge') | |
if self.augment: | |
self.batch_2d_flip[i] = np.pad(seq_2d[low_2d:high_2d], | |
((pad_left_2d, pad_right_2d), (0, 0), (0, 0)), | |
'edge') | |
else: | |
self.batch_2d[i] = seq_2d[low_2d:high_2d] | |
if self.augment: | |
self.batch_2d_flip[i] = seq_2d[low_2d:high_2d] | |
if self.augment: | |
self.batch_2d_flip[i, :, :, 0] *= -1 | |
self.batch_2d_flip[i, :, self.kps_left + self.kps_right] = self.batch_2d_flip[i, :, | |
self.kps_right + self.kps_left] | |
# 3D poses | |
if self.poses_3d is not None: | |
seq_3d = self.poses_3d[seq_i] | |
low_3d = max(start_3d, 0) | |
high_3d = min(end_3d, seq_3d.shape[0]) | |
pad_left_3d = low_3d - start_3d | |
pad_right_3d = end_3d - high_3d | |
if pad_left_3d != 0 or pad_right_3d != 0: | |
self.batch_3d[i] = np.pad(seq_3d[low_3d:high_3d], | |
((pad_left_3d, pad_right_3d), (0, 0), (0, 0)), 'edge') | |
else: | |
self.batch_3d[i] = seq_3d[low_3d:high_3d] | |
if flip: | |
self.batch_3d[i, :, :, 0] *= -1 | |
self.batch_3d[i, :, self.joints_left + self.joints_right] = \ | |
self.batch_3d[i, :, self.joints_right + self.joints_left] | |
# Cameras | |
if self.cameras is not None: | |
self.batch_cam[i] = self.cameras[seq_i] | |
if flip: | |
# Flip horizontal distortion coefficients | |
self.batch_cam[i, 2] *= -1 | |
self.batch_cam[i, 7] *= -1 | |
if self.endless: | |
self.state = (b_i + 1, pairs) | |
if self.augment: | |
if self.poses_3d is None and self.cameras is None: | |
yield None, None, self.batch_2d[:len(chunks)], self.batch_2d_flip[:len(chunks)] | |
elif self.poses_3d is not None and self.cameras is None: | |
yield None, self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)], self.batch_2d_flip[ | |
:len(chunks)] | |
elif self.poses_3d is None: | |
yield self.batch_cam[:len(chunks)], None, self.batch_2d[:len(chunks)], self.batch_2d_flip[ | |
:len(chunks)] | |
else: | |
yield self.batch_cam[:len(chunks)], self.batch_3d[:len(chunks)], self.batch_2d[:len( | |
chunks)], self.batch_2d_flip[:len(chunks)] | |
else: | |
if self.poses_3d is None and self.cameras is None: | |
yield None, None, self.batch_2d[:len(chunks)] | |
elif self.poses_3d is not None and self.cameras is None: | |
yield None, self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)] | |
elif self.poses_3d is None: | |
yield self.batch_cam[:len(chunks)], None, self.batch_2d[:len(chunks)] | |
else: | |
yield self.batch_cam[:len(chunks)], self.batch_3d[:len(chunks)], self.batch_2d[:len(chunks)] | |
if self.endless: | |
self.state = None | |
else: | |
enabled = False |