# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import copy import numpy as np from common.mocap_dataset import MocapDataset from common.skeleton import Skeleton humaneva_skeleton = Skeleton(parents=[-1, 0, 1, 2, 3, 1, 5, 6, 0, 8, 9, 0, 11, 12, 1], joints_left=[2, 3, 4, 8, 9, 10], joints_right=[5, 6, 7, 11, 12, 13]) humaneva_cameras_intrinsic_params = [ { 'id': 'C1', 'res_w': 640, 'res_h': 480, 'azimuth': 0, # Only used for visualization }, { 'id': 'C2', 'res_w': 640, 'res_h': 480, 'azimuth': -90, # Only used for visualization }, { 'id': 'C3', 'res_w': 640, 'res_h': 480, 'azimuth': 90, # Only used for visualization }, ] humaneva_cameras_extrinsic_params = { 'S1': [ { 'orientation': [0.424207, -0.4983646, -0.5802981, 0.4847012], 'translation': [4062.227, 663.2477, 1528.397], }, { 'orientation': [0.6503354, -0.7481602, -0.0919284, 0.0941766], 'translation': [844.8131, -3805.2092, 1504.9929], }, { 'orientation': [0.0664734, -0.0690535, 0.7416416, -0.6639132], 'translation': [-797.67377, 3916.3174, 1433.6602], }, ], 'S2': [ { 'orientation': [0.4214752, -0.4961493, -0.5838273, 0.4851187], 'translation': [4112.9121, 626.4929, 1545.2988], }, { 'orientation': [0.6501393, -0.7476588, -0.0954617, 0.0959808], 'translation': [923.5740, -3877.9243, 1504.5518], }, { 'orientation': [0.0699353, -0.0712403, 0.7421637, -0.662742], 'translation': [-781.4915, 3838.8853, 1444.9929], }, ], 'S3': [ { 'orientation': [0.424207, -0.4983646, -0.5802981, 0.4847012], 'translation': [4062.2271, 663.2477, 1528.3970], }, { 'orientation': [0.6503354, -0.7481602, -0.0919284, 0.0941766], 'translation': [844.8131, -3805.2092, 1504.9929], }, { 'orientation': [0.0664734, -0.0690535, 0.7416416, -0.6639132], 'translation': [-797.6738, 3916.3174, 1433.6602], }, ], 'S4': [ {}, {}, {}, ], } class HumanEvaDataset(MocapDataset): def __init__(self, path): super().__init__(fps=60, skeleton=humaneva_skeleton) self._cameras = copy.deepcopy(humaneva_cameras_extrinsic_params) for cameras in self._cameras.values(): for i, cam in enumerate(cameras): cam.update(humaneva_cameras_intrinsic_params[i]) for k, v in cam.items(): if k not in ['id', 'res_w', 'res_h']: cam[k] = np.array(v, dtype='float32') if 'translation' in cam: cam['translation'] = cam['translation'] / 1000 # mm to meters for subject in list(self._cameras.keys()): data = self._cameras[subject] del self._cameras[subject] for prefix in ['Train/', 'Validate/', 'Unlabeled/Train/', 'Unlabeled/Validate/', 'Unlabeled/']: self._cameras[prefix + subject] = data # Load serialized dataset data = np.load(path)['positions_3d'].item() self._data = {} for subject, actions in data.items(): self._data[subject] = {} for action_name, positions in actions.items(): self._data[subject][action_name] = { 'positions': positions, 'cameras': self._cameras[subject], }