# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import numpy as np import torch from common.quaternion import qrot, qinverse from common.utils import wrap def normalize_screen_coordinates(X, w, h): assert X.shape[-1] == 2 # Normalize so that [0, w] is mapped to [-1, 1], while preserving the aspect ratio return X / w * 2 - [1, h / w] def normalize_screen_coordinates_new(X, w, h): assert X.shape[-1] == 2 return (X - (w / 2, h / 2)) / (w / 2, h / 2) def image_coordinates_new(X, w, h): assert X.shape[-1] == 2 # Reverse camera frame normalization return (X * (w / 2, h / 2)) + (w / 2, h / 2) def image_coordinates(X, w, h): assert X.shape[-1] == 2 # Reverse camera frame normalization return (X + [1, h / w]) * w / 2 def world_to_camera(X, R, t): Rt = wrap(qinverse, R) # Invert rotation return wrap(qrot, np.tile(Rt, (*X.shape[:-1], 1)), X - t) # Rotate and translate def camera_to_world(X, R, t): return wrap(qrot, np.tile(R, (*X.shape[:-1], 1)), X) + t def project_to_2d(X, camera_params): """ Project 3D points to 2D using the Human3.6M camera projection function. This is a differentiable and batched reimplementation of the original MATLAB script. Arguments: X -- 3D points in *camera space* to transform (N, *, 3) camera_params -- intrinsic parameteres (N, 2+2+3+2=9) focal length / principal point / radial_distortion / tangential_distortion """ assert X.shape[-1] == 3 assert len(camera_params.shape) == 2 assert camera_params.shape[-1] == 9 assert X.shape[0] == camera_params.shape[0] while len(camera_params.shape) < len(X.shape): camera_params = camera_params.unsqueeze(1) f = camera_params[..., :2] # focal lendgth c = camera_params[..., 2:4] # center principal point k = camera_params[..., 4:7] p = camera_params[..., 7:] XX = torch.clamp(X[..., :2] / X[..., 2:], min=-1, max=1) r2 = torch.sum(XX[..., :2] ** 2, dim=len(XX.shape) - 1, keepdim=True) radial = 1 + torch.sum(k * torch.cat((r2, r2 ** 2, r2 ** 3), dim=len(r2.shape) - 1), dim=len(r2.shape) - 1, keepdim=True) tan = torch.sum(p * XX, dim=len(XX.shape) - 1, keepdim=True) XXX = XX * (radial + tan) + p * r2 return f * XXX + c def project_to_2d_linear(X, camera_params): """ 使用linear parameters is a little difference for use linear and no-linear parameters Project 3D points to 2D using only linear parameters (focal length and principal point). Arguments: X -- 3D points in *camera space* to transform (N, *, 3) camera_params -- intrinsic parameteres (N, 2+2+3+2=9) """ assert X.shape[-1] == 3 assert len(camera_params.shape) == 2 assert camera_params.shape[-1] == 9 assert X.shape[0] == camera_params.shape[0] while len(camera_params.shape) < len(X.shape): camera_params = camera_params.unsqueeze(1) f = camera_params[..., :2] c = camera_params[..., 2:4] XX = torch.clamp(X[..., :2] / X[..., 2:], min=-1, max=1) return f * XX + c