SarowarSaurav commited on
Commit
40b061b
1 Parent(s): 680be8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -2,14 +2,15 @@ import gradio as gr
2
  from transformers import pipeline
3
  from PIL import Image
4
 
5
- # Load a pre-trained model for plant disease classification
6
- model = pipeline("image-classification", model="microsoft/resnet-50") # Replace with a specific plant disease model if available on Hugging Face
 
7
 
8
- def classify_disease(image):
9
  # Run the model on the image
10
  results = model(image)
11
 
12
- # Format the top result (assuming the top-1 result is most accurate)
13
  disease_name = results[0]['label']
14
  confidence_score = results[0]['score']
15
 
@@ -18,15 +19,15 @@ def classify_disease(image):
18
 
19
  # Create Gradio Interface
20
  interface = gr.Interface(
21
- fn=classify_disease,
22
  inputs=gr.Image(type="pil"),
23
  outputs=[
24
  gr.Textbox(label="Disease Name"),
25
  gr.Textbox(label="Confidence Score"),
26
  gr.Image(type="pil", label="Uploaded Image")
27
  ],
28
- title="Tobacco Plant Disease Identification",
29
- description="Upload an image of a tobacco plant leaf, and this model will identify the disease and show the confidence score."
30
  )
31
 
32
  # Launch the app
 
2
  from transformers import pipeline
3
  from PIL import Image
4
 
5
+ # Load a pre-trained model suitable for general plant disease classification
6
+ # Replace with an appropriate model from Hugging Face's hub trained on PlantVillage or similar
7
+ model = pipeline("image-classification", model="PlantVillage/plant-disease-model") # Replace with actual general plant disease model name if available
8
 
9
+ def classify_leaf_disease(image):
10
  # Run the model on the image
11
  results = model(image)
12
 
13
+ # Get the top prediction
14
  disease_name = results[0]['label']
15
  confidence_score = results[0]['score']
16
 
 
19
 
20
  # Create Gradio Interface
21
  interface = gr.Interface(
22
+ fn=classify_leaf_disease,
23
  inputs=gr.Image(type="pil"),
24
  outputs=[
25
  gr.Textbox(label="Disease Name"),
26
  gr.Textbox(label="Confidence Score"),
27
  gr.Image(type="pil", label="Uploaded Image")
28
  ],
29
+ title="Leaf Disease Identification",
30
+ description="Upload an image of any plant leaf, and this model will identify the disease and show the confidence score."
31
  )
32
 
33
  # Launch the app