Spaces:
Runtime error
Runtime error
File size: 7,374 Bytes
a9ae4d6 73a72e4 a9ae4d6 2d9a7bb 8ae2f60 c2a1077 48a8ce5 d6bb012 0a71207 d6bb012 826b6f7 79341c6 3ee5fd7 ff11284 3ee5fd7 b27a82c d6f3792 73a72e4 d6f3792 73a72e4 b27a82c 826b6f7 d6bb012 79341c6 3ee5fd7 d6bb012 08426ab d6bb012 826b6f7 d0ce3e0 9278116 a0e2673 634dfe9 826b6f7 d6bb012 634dfe9 826b6f7 5039e23 826b6f7 73a72e4 d0ce3e0 73a72e4 d0ce3e0 e45e7fb 5039e23 73a72e4 5039e23 73a72e4 5039e23 dbe00f2 5039e23 73a72e4 e45e7fb ff11284 e45e7fb d95772b 5039e23 3ee5fd7 d0ce3e0 e45e7fb d95772b 699adea 134ae6e 699adea efb6635 699adea b712baa 5039e23 134ae6e 21879cd d8b3a4e ea2d98b d0ce3e0 3ee5fd7 134ae6e 3ee5fd7 134ae6e 0a71207 e5268d8 0a71207 e5268d8 0a71207 e5268d8 0a71207 f22548e e5268d8 0a71207 e5268d8 0a71207 9278116 a0e2673 9278116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import streamlit as st
import time
from annotated_text import annotated_text
from io import StringIO
from transformers import AutoTokenizer, AutoModelForTokenClassification
from text_extractor import *
from text_annotatator import *
import os
from streamlit_text_annotation import text_annotation
os.environ['KMP_DUPLICATE_LIB_OK']='True'
import plotly.express as px
from streamlit_option_menu import option_menu
st. set_page_config(layout="wide")
from transformers import pipeline
import pandas as pd
@st.cache(allow_output_mutation = True)
def init_text_summarization_model():
MODEL = 'facebook/bart-large-cnn'
pipe = pipeline("summarization", model=MODEL)
return pipe
@st.cache(allow_output_mutation = True)
def init_zsl_topic_classification():
MODEL = 'facebook/bart-large-mnli'
pipe = pipeline("zero-shot-classification", model=MODEL)
template = "This text is about {}."
return pipe, template
@st.cache(allow_output_mutation = True)
def init_zsl_topic_classification():
MODEL = 'facebook/bart-large-mnli'
pipe = pipeline("zero-shot-classification", model=MODEL)
template = "This text is about {}."
return pipe, template
@st.cache(allow_output_mutation = True)
def init_ner_pipeline():
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") # pass device=0 if using gpu
return pipe
@st.cache(allow_output_mutation = True)
def init_qa_pipeline():
question_answerer_pipe = pipeline("question-answering", model='deepset/roberta-base-squad2')
return question_answerer_pipe
def get_formatted_text_for_annotation(output):
colour_map = {'Coreference': '#29D93B',
'Severity':'#FCF3CF',
'Sex': '#E9F7EF',
'Sign_symptom': '#EAF2F8',
'Detailed_description': '#078E8B',
'Date': '#F5EEF8',
'History': '#FDEDEC',
'Medication': '#F4F6F6',
'Therapeutic_procedure': '#A3E4D7',
'Age': '#85C1E9',
'Subject': '#D7BDE2',
'Biological_structure': '#AF7AC5',
'Activity': '#B2BABB',
'Lab_value': '#E6B0AA',
'Family_history': '#2471A3',
'Diagnostic_procedure': '#CCD1D1',
'Other_event': '#239B56',
'Occupation': '#B3B6B7'}
annotated_texts = []
next_index = 0
for entity in output:
if entity['start'] == next_index:
# print("found entity")
extracted_text = text[entity['start']:entity['end']]
# print("annotated",annotated_text)
annotated_texts.append((extracted_text ,entity['entity_group'],colour_map[entity['entity_group']]))
else:
unannotated_text = text[next_index:entity['start']-1]
annotated_texts.append(unannotated_text)
extracted_text = text[entity['start']:entity['end']]
annotated_texts.append((extracted_text ,entity['entity_group'],colour_map[entity['entity_group']]))
next_index =entity['end'] +1
if next_index < len(text):
annotated_texts.append(text[next_index-1:len(text)-1])
return tuple(annotated_texts)
# Model initialization
pipeline_summarization = init_text_summarization_model()
pipeline_zsl, template = init_zsl_topic_classification()
pipeline_ner =init_ner_pipeline()
pipeline_qa = init_qa_pipeline()
st.header("Intelligent Document Automation")
with st.sidebar:
selected_menu = option_menu("Select Option",
["Upload Document", "Extract Text", "Summarize Document", "Extract Entities","Detected Barriers","Get Answers","Annotation Tool",
"Claim Status Report"],
menu_icon="cast", default_index=0)
if selected_menu == "Upload Document":
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
ocr_text = get_text_from_ocr_engine()
st.write("Upload Successful")
elif selected_menu == "Extract Text":
with st.spinner("Extracting Text..."):
time.sleep(6)
st.write(get_text_from_ocr_engine())
elif selected_menu == "Summarize Document":
paragraphs= get_paragraphs_for_summaries()
with st.spinner("Finding Topics..."):
tags_found = ["Injury Details", "Past Medical Conditions", "Injury Management Plan", "GP Correspondence"]
time.sleep(5)
st.write("This document is about:")
st.markdown(";".join(["#" + tag + " " for tag in tags_found]) + "**")
st.markdown("""---""")
with st.spinner("Summarizing Document..."):
for text in paragraphs:
summary_text = pipeline_summarization(text, max_length=130, min_length=30, do_sample=False)
# Show output
st.write(summary_text[0]['summary_text'])
st.markdown("""---""")
elif selected_menu == "Extract Entities":
paragraphs= get_paragraphs_for_entities()
with st.spinner("Extracting Entities..."):
for text in paragraphs:
output = pipeline_ner (text)
entities_text =get_formatted_text_for_annotation(output)
annotated_text(*entities_text)
st.markdown("""---""")
elif selected_menu == "Detected Barriers":
#st.subheader('Barriers Detected')
barriers_to_detect = {"Chronic Pain":"Is the patint experiencing chronic pain?",
"Mental Health Issues":"Does he have any mental issues?",
"Prior History":"What is prior medical history?",
"Smoking":"Does he smoke?",
"Drinking":"Does he drink?",
"Comorbidities":"Does he have any comorbidities?"}
with st.spinner("Detecting Barriers..."):
for barrier,question_text in barriers_to_detect.items():
context = get_text_from_ocr_engine()
if question_text:
result = pipeline_qa(question=question_text, context=context)
st.subheader(barrier)
#st.text(result)
if result['score'] < 0.3:
st.text("Not Found")
else:
st.text(result['answer'])
elif selected_menu == "Get Answers":
st.subheader('Question')
question_text = st.text_input("Type your question")
context = get_text_from_ocr_engine()
if question_text:
with st.spinner("Finding Answer(s)..."):
result = pipeline_qa(question=question_text, context=context)
st.subheader('Answer')
st.text(result['answer'])
elif selected_menu == "Annotation Tool":
display_only_data = get_display_only_data()
editable_data = get_editable_data()
st.subheader("Display Mode:")
left, right = st.columns(2)
with left:
st.text("Vertical labels:")
text_annotation(display_only_data )
with right:
st.text("Horizontal labels:")
display_only_data["labelOrientation"] = "horizontal"
text_annotation(display_only_data )
st.subheader("Edit Mode:")
data = text_annotation(editable_data)
if data:
"Returned data:", data
elif selected_menu == "Claim Status Report":
claim_number = st.text_input("Enter the Claim Number") |