import gradio as gr from huggingface_hub import InferenceClient import llama_huggingface import prompts """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ #client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") client = InferenceClient("meta-llama/Llama-3.2-1B-Instruct") chat_model='' def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def respond2( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): prompt=prompts.compose_prompt( system_message='You are an AI', human_message=message ) reply=chat_model.invoke(prompt) yield reply.content def init_gradio(repo_id): global chat_model chat_model=llama_huggingface.init_llama_chatmodel(repo_id=repo_id) def get_gradio_interface(): demo = gr.ChatInterface( respond2, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) return demo