import gradio as gr from haystack.nodes import FARMReader, PreProcessor, PDFToTextConverter, TfidfRetriever from haystack.document_stores import InMemoryDocumentStore from haystack.pipelines import ExtractiveQAPipeline document_store = InMemoryDocumentStore() model = "Saturdays/mdeberta-v3-base-squad2_refugees_dataset_finetuned" reader = FARMReader(model_name_or_path=model) preprocessor = PreProcessor( clean_empty_lines=True, clean_whitespace=True, clean_header_footer=True, split_by="word", split_length=100, split_respect_sentence_boundary=True, split_overlap=3 ) def print_answers(results): fields = ["answer", "score"] # "context", answers = results["answers"] filtered_answers = [] for ans in answers: filtered_ans = { field: getattr(ans, field) for field in fields if getattr(ans, field) is not None } filtered_answers.append(filtered_ans) return filtered_answers def pdf_to_document_store(pdf_file): document_store.delete_documents() converter = PDFToTextConverter( remove_numeric_tables=True, valid_languages=["es"]) documents = [converter.convert(file_path=pdf_file, meta=None)[0]] preprocessed_docs = preprocessor.process(documents) document_store.write_documents(preprocessed_docs) return None def predict(question): pdf_to_document_store("data.pdf") retriever = TfidfRetriever(document_store=document_store) pipe = ExtractiveQAPipeline(reader, retriever) result = pipe.run(query=question, params={"Retriever": { "top_k": 5}, "Reader": {"top_k": 3}}) answers = print_answers(result) return answers title = "Chatbot Refugiados \n Our chatbot helps refugees arriving in Spain by providing information on key topics." iface = gr.Interface(fn=predict, inputs=[gr.inputs.Textbox(lines=3, label='Haz una pregunta')], outputs="text", title=title, theme="huggingface", examples=['Dónde pedir ayuda?', 'qué hacer al llegar a España?'] ) iface.launch()