import json import os import re import statistics import gradio as gr import pandas as pd from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import ( CharacterTextSplitter, RecursiveCharacterTextSplitter, ) from tqdm import tqdm from tempfile import NamedTemporaryFile from transformers import AutoModelForSeq2SeqLM, AutoTokenizer os.environ["OPENAI_API_KEY"] = "sk-" def pdf_parser(uploaded_file): ''' bytes_data = uploaded_file.read() with NamedTemporaryFile(delete=False) as tmp: # open a named temporary file tmp.write(bytes_data) # Write data from the uploaded file into it pdf_loader = PyPDFLoader(tmp.name) # <---- now it works! ''' #pdf_loader = PyPDFLoader(file_path) only for file path offline pdf_loader=OnlinePDFLoader(uploaded_file.name) #https://huggingface.co/spaces/fffiloni/langchain-chat-with-pdf/blob/main/app.py documents = pdf_loader.load() documents_text = [d.page_content for d in documents] text_splitter = RecursiveCharacterTextSplitter( # Set a really small chunk size, just to show. chunk_size=600, chunk_overlap=200, length_function=len, is_separator_regex=False, ) # Split the text into chunks texts = text_splitter.create_documents(documents_text) #os.remove(tmp.name) # remove temp file return texts def qa_generator(texts): question_tokenizer = AutoTokenizer.from_pretrained( "potsawee/t5-large-generation-squad-QuestionAnswer" ) question_model = AutoModelForSeq2SeqLM.from_pretrained( "potsawee/t5-large-generation-squad-QuestionAnswer" ) question_answer_dic = {} for i in tqdm(texts): context = i.page_content try: inputs = question_tokenizer(context, return_tensors="pt") outputs = question_model.generate(**inputs, max_length=100) question_answer = question_tokenizer.decode( outputs[0], skip_special_tokens=False ) question_answer = question_answer.replace( question_tokenizer.pad_token, "" ).replace(question_tokenizer.eos_token, "") question, answer = question_answer.split(question_tokenizer.sep_token) question_answer_dic[question] = answer except: print(i) qa_notes_df = pd.DataFrame(data=[], columns=["No", "Question", "Answer"]) qa_notes_df["No"] = [i + 1 for i in range(0, len(question_answer_dic))] qa_notes_df["Question"] = [k for k in question_answer_dic.keys()] qa_notes_df["Answer"] = [a for a in question_answer_dic.values()] qa_notes_json = qa_notes_df.to_dict("records") return qa_notes_json