import gradio as gr import requests from PIL import Image from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor import spaces @spaces.GPU def infer_diagram(image, question): model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ai2d-448").to("cuda") processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-ai2d-448") inputs = processor(images=image, text=question, return_tensors="pt").to("cuda") predictions = model.generate(**inputs, max_new_tokens=100) return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") @spaces.GPU def infer_ocrvqa(image, question): model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-ocrvqa-896").to("cuda") processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-ocrvqa-896e") inputs = processor(images=image,text=question, return_tensors="pt").to("cuda") predictions = model.generate(**inputs, max_new_tokens=100) return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") @spaces.GPU def infer_infographics(image, question): model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-infovqa-896").to("cuda") processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-infovqa-896") inputs = processor(images=image, text=question, return_tensors="pt").to("cuda") predictions = model.generate(**inputs, max_new_tokens=100) return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") @spaces.GPU def infer_doc(image, question): model = PaliGemmaForConditionalGeneration.from_pretrained("google/paligemma-3b-ft-docvqa-896").to("cuda") processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-ft-docvqa-896") inputs = processor(images=image, text=question, return_tensors="pt").to("cuda") predictions = model.generate(**inputs, max_new_tokens=100) return processor.decode(predictions[0], skip_special_tokens=True)[len(question):].lstrip("\n") css = """ #mkd { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.HTML("

PaliGemma Fine-tuned on Documents 📄

") gr.HTML("

This Space is built for you to compare different PaliGemma models fine-tuned on document tasks. âš¡

") gr.HTML("

Each tab in this app demonstrates PaliGemma models fine-tuned on document question answering, infographics question answering, diagram understanding, and reading comprehension from images. 📄📕📊

") gr.HTML("

Models are downloaded on the go, so first inference in each tab might take time if it's not already downloaded.

") with gr.Tab(label="Visual Question Answering over Documents"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Document") question = gr.Text(label="Question") submit_btn = gr.Button(value="Submit") output = gr.Text(label="Answer") gr.Examples( [["assets/docvqa_example.png", "How many items are sold?"]], inputs = [input_img, question], outputs = [output], fn=infer_doc, label='Click on any Examples below to get Document Question Answering results quickly 👇' ) submit_btn.click(infer_doc, [input_img, question], [output]) with gr.Tab(label="Visual Question Answering over Infographics"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Image") question = gr.Text(label="Question") submit_btn = gr.Button(value="Submit") output = gr.Text(label="Answer") gr.Examples( [["assets/infographics_example (1).jpeg", "What is this infographic about?"]], inputs = [input_img, question], outputs = [output], fn=infer_infovqa, label='Click on any Examples below to get Infographics QA results quickly 👇' ) submit_btn.click(infer_infographics, [input_img, question], [output]) with gr.Tab(label="Reading from Images"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Document") question = gr.Text(label="Question") submit_btn = gr.Button(value="Submit") output = gr.Text(label="Infer") submit_btn.click(infer_ocrvqa, [input_img, question], [output]) gr.Examples( [["assets/ocrvqa.jpg", "Who is the author of this book?"]], inputs = [input_img, question], outputs = [output], fn=infer_doc, label='Click on any Examples below to get UI question answering results quickly 👇' ) with gr.Tab(label="Diagram Understanding"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Diagram") question = gr.Text(label="Question") submit_btn = gr.Button(value="Submit") output = gr.Text(label="Infer") submit_btn.click(infer_diagram, [input_img, question], [output]) gr.Examples( [["assets/diagram.png", "What is the diagram showing?"]], inputs = [input_img, question], outputs = [output], fn=infer_doc, label='Click on any Examples below to get UI question answering results quickly 👇' ) demo.launch(debug=True)