Spaces:
Runtime error
Runtime error
File size: 13,818 Bytes
2eb7830 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import gradio as gr
import openai
import numpy as np
import time
import base64
import ffmpeg
from sentence_transformers import SentenceTransformer
from audio2numpy import open_audio
import httpx
import json
import os
import requests
import urllib
import pydub
from os import path
from pydub import AudioSegment
import re
MUBERT_LICENSE = os.environ.get('MUBERT_LICENSE')
MUBERT_TOKEN = os.environ.get('MUBERT_TOKEN')
#img_to_text = gr.Blocks.load(name="spaces/pharma/CLIP-Interrogator")
img_to_text = gr.Blocks.load(name="spaces/fffiloni/CLIP-Interrogator-2")
from share_btn import community_icon_html, loading_icon_html, share_js
from utils import get_tags_for_prompts, get_mubert_tags_embeddings
minilm = SentenceTransformer('all-MiniLM-L6-v2')
mubert_tags_embeddings = get_mubert_tags_embeddings(minilm)
##ββββββββββββββββββββββββββββββββββββ
MUBERT_LICENSE = os.environ.get('MUBERT_LICENSE')
MUBERT_TOKEN = os.environ.get('MUBERT_TOKEN')
##ββββββββββββββββββββββββββββββββββββ
def get_pat_token():
r = httpx.post('https://api-b2b.mubert.com/v2/GetServiceAccess',
json={
"method": "GetServiceAccess",
"params": {
"email":"[email protected]",
"phone":"+11234567890",
"license": MUBERT_LICENSE,
"token": MUBERT_TOKEN,
}
})
rdata = json.loads(r.text)
assert rdata['status'] == 1, "probably incorrect e-mail"
pat = rdata['data']['pat']
#print(f"pat: {pat}")
return pat
def get_music(pat, prompt, track_duration, gen_intensity, gen_mode):
if len(prompt) > 200:
prompt = prompt[:200]
r = httpx.post('https://api-b2b.mubert.com/v2/TTMRecordTrack',
json={
"method": "TTMRecordTrack",
"params":
{
"text": prompt,
"pat": pat,
"mode":gen_mode,
"duration":track_duration,
"intensity": gen_intensity,
"format": "wav"
}
})
rdata = json.loads(r.text)
#print(f"rdata: {rdata}")
assert rdata['status'] == 1, rdata['error']['text']
track = rdata['data']['tasks'][0]['download_link']
print(track)
local_file_path = "sample.wav"
# Download the MP3 file from the URL
headers = {
'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7; rv:93.0) Gecko/20100101 Firefox/93.0'}
retries = 3
delay = 5 # in seconds
while retries > 0:
response = requests.get(track, headers=headers)
if response.status_code == 200:
break
retries -= 1
time.sleep(delay)
response = requests.get(track, headers=headers)
print(f"{response}")
# Save the downloaded content to a local file
with open(local_file_path, 'wb') as f:
f.write(response.content)
return "sample.wav", track
def get_results(text_prompt,track_duration,gen_intensity,gen_mode):
pat_token = get_pat_token()
music = get_music(pat_token, text_prompt, track_duration, gen_intensity, gen_mode)
return pat_token, music[0], music[1]
def get_prompts(uploaded_image, track_duration, gen_intensity, gen_mode, openai_api_key):
print("calling clip interrogator")
#prompt = img_to_text(uploaded_image, "ViT-L (best for Stable Diffusion 1.*)", "fast", fn_index=1)[0]
prompt = img_to_text(uploaded_image, 'best', 4, fn_index=1)[0]
print(prompt)
clean_prompt = clean_text(prompt)
print(f"prompt cleaned: {clean_prompt}")
musical_prompt = 'You did not use any OpenAI API key to pimp your result :)'
if openai_api_key is not None:
gpt_adaptation = try_api(prompt, openai_api_key)
if gpt_adaptation[0] != "oups":
musical_prompt = gpt_adaptation[0]
print(f"musical adapt: {musical_prompt}")
music_result = get_results(musical_prompt, track_duration, gen_intensity, gen_mode)
else:
music_result = get_results(clean_prompt, track_duration, gen_intensity, gen_mode)
else:
music_result = get_results(clean_prompt, track_duration, gen_intensity, gen_mode)
show_prompts = f"""
CLIP Interrogator Caption: '{prompt}'
β
OpenAI Musical Adaptation: '{musical_prompt}'
β
Audio file link: {music_result[2]}
"""
#wave_file = convert_mp3_to_wav(music_result[1])
time.sleep(1)
return gr.Textbox.update(value=show_prompts, visible=True), music_result[1], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
def try_api(message, openai_api_key):
try:
response = call_api(message, openai_api_key)
return response, "<span class='openai_clear'>no error</span>"
except openai.error.Timeout as e:
#Handle timeout error, e.g. retry or log
#print(f"OpenAI API request timed out: {e}")
return "oups", f"<span class='openai_error'>OpenAI API request timed out: <br />{e}</span>"
except openai.error.APIError as e:
#Handle API error, e.g. retry or log
#print(f"OpenAI API returned an API Error: {e}")
return "oups", f"<span class='openai_error'>OpenAI API returned an API Error: <br />{e}</span>"
except openai.error.APIConnectionError as e:
#Handle connection error, e.g. check network or log
#print(f"OpenAI API request failed to connect: {e}")
return "oups", f"<span class='openai_error'>OpenAI API request failed to connect: <br />{e}</span>"
except openai.error.InvalidRequestError as e:
#Handle invalid request error, e.g. validate parameters or log
#print(f"OpenAI API request was invalid: {e}")
return "oups", f"<span class='openai_error'>OpenAI API request was invalid: <br />{e}</span>"
except openai.error.AuthenticationError as e:
#Handle authentication error, e.g. check credentials or log
#print(f"OpenAI API request was not authorized: {e}")
return "oups", f"<span class='openai_error'>OpenAI API request was not authorized: <br />{e}</span>"
except openai.error.PermissionError as e:
#Handle permission error, e.g. check scope or log
#print(f"OpenAI API request was not permitted: {e}")
return "oups", f"<span class='openai_error'>OpenAI API request was not permitted: <br />{e}</span>"
except openai.error.RateLimitError as e:
#Handle rate limit error, e.g. wait or log
#print(f"OpenAI API request exceeded rate limit: {e}")
return "oups", f"<span class='openai_error'>OpenAI API request exceeded rate limit: <br />{e}</span>"
def call_api(message, openai_api_key):
instruction = "Convert in less than 200 characters this image caption to a very concise musical description with musical terms, as if you wanted to describe a musical ambiance, stricly in English"
print("starting open ai")
augmented_prompt = f"{instruction}: '{message}'."
openai.api_key = openai_api_key
response = openai.Completion.create(
model="text-davinci-003",
prompt=augmented_prompt,
temperature=0.5,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0.6
)
#print(response)
#return str(response.choices[0].text).split("\n",2)[2]
return str(response.choices[0].text).lstrip('\n')
def get_track_by_tags(tags, pat, duration, gen_intensity, gen_mode, maxit=20):
r = httpx.post('https://api-b2b.mubert.com/v2/RecordTrackTTM',
json={
"method": "RecordTrackTTM",
"params": {
"pat": pat,
"duration": duration,
"format": "wav",
"intensity":gen_intensity,
"tags": tags,
"mode": gen_mode
}
})
rdata = json.loads(r.text)
print(rdata)
#assert rdata['status'] == 1, rdata['error']['text']
trackurl = rdata['data']['tasks'][0]
print('Generating track ', end='')
for i in range(maxit):
r = httpx.get(trackurl)
if r.status_code == 200:
return trackurl
time.sleep(1)
def generate_track_by_prompt(pat, prompt, duration, gen_intensity, gen_mode):
try:
_, tags = get_tags_for_prompts(minilm, mubert_tags_embeddings, prompt)[0]
result = get_track_by_tags(tags, pat, int(duration), gen_intensity, gen_mode)
print(result)
return result, ",".join(tags), "Success"
except Exception as e:
return None, "", str(e)
def convert_mp3_to_wav(mp3_filepath):
wave_file="file.wav"
sound = AudioSegment.from_mp3(mp3_filepath)
sound.export(wave_file, format="wav")
return wave_file
def remove_emoji(text):
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
"]+", flags=re.UNICODE)
return emoji_pattern.sub(r'', text)
def remove_nonalphanumeric(text):
return re.sub(r'[^a-zA-Z0-9\s]', '', text)
def clean_text(text):
clean_text = remove_nonalphanumeric(text)
clean_text = remove_emoji(clean_text)
clean_text = re.sub(r'\d+', '', clean_text) # Remove any number
return clean_text
article = """
<div class="footer">
<p>
Follow <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> for future updates π€
</p>
</div>
<div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;margin-bottom: 30px;">
<p style="font-size: 0.8em;margin-bottom: 4px;">You may also like: </p>
<div id="may-like" style="display: flex;flex-wrap: wrap;align-items: center;height: 20px;">
<svg height="20" width="122" style="margin-left:4px;margin-bottom: 6px;">
<a href="https://huggingface.co/spaces/fffiloni/spectrogram-to-music" target="_blank">
<image href="https://img.shields.io/badge/π€ Spaces-Riffusion-blue" src="https://img.shields.io/badge/π€ Spaces-Riffusion-blue.png" height="20"/>
</a>
</svg>
</div>
</div>
"""
with gr.Blocks(css="style.css") as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Image to Music
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Sends an image in to <a href="https://huggingface.co/spaces/pharma/CLIP-Interrogator" target="_blank">CLIP Interrogator</a>
to generate a text prompt which is then run through
<a href="https://huggingface.co/Mubert" target="_blank">Mubert</a> text-to-music to generate music from the input image!
</p>
</div>""")
input_img = gr.Image(type="filepath", elem_id="input-img")
prompts_out = gr.Textbox(label="Text Captions", visible=False, info="If player do not work, try to copy/paste the link in a new browser window")
music_output = gr.Audio(label="Result", type="filepath", elem_id="music-output").style(height="5rem")
#music_url = gr.Textbox(max_lines=1, info="If player do not work, try to copy/paste the link in a new browser window")
#text_status = gr.Textbox(label="status")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
with gr.Accordion(label="Music Generation Options", open=False):
openai_api_key = gr.Textbox(type="password", label="π Your OpenAI API Key (optional)", placeholder="sk-123abc...", info="You can use your OpenAI key to adapt CLIP Interrogator caption to a musical translation.")
track_duration = gr.Slider(minimum=20, maximum=120, value=55, ustep=5, label="Track duration", elem_id="duration-inp")
with gr.Row():
gen_intensity = gr.Dropdown(choices=["low", "medium", "high"], value="medium", label="Intensity")
gen_mode = gr.Radio(label="mode", choices=["track", "loop"], value="loop")
generate = gr.Button("Generate Music from Image")
gr.HTML(article)
generate.click(get_prompts, inputs=[input_img,track_duration,gen_intensity,gen_mode, openai_api_key], outputs=[prompts_out, music_output, share_button, community_icon, loading_icon], api_name="i2m")
share_button.click(None, [], [], _js=share_js)
demo.queue(max_size=32).launch() |