Commit
•
015885c
1
Parent(s):
7fdd6d6
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList
|
4 |
import time
|
5 |
import numpy as np
|
6 |
from torch.nn import functional as F
|
7 |
import os
|
8 |
-
|
|
|
9 |
print(f"Starting to load the model to memory")
|
10 |
m = AutoModelForCausalLM.from_pretrained(
|
11 |
"stabilityai/stablelm-tuned-alpha-7b", torch_dtype=torch.float16).cuda()
|
@@ -28,62 +29,40 @@ class StopOnTokens(StoppingCriteria):
|
|
28 |
return True
|
29 |
return False
|
30 |
|
31 |
-
|
32 |
-
def contrastive_generate(text, bad_text):
|
33 |
-
with torch.no_grad():
|
34 |
-
tokens = tok(text, return_tensors="pt")[
|
35 |
-
'input_ids'].cuda()[:, :4096-1024]
|
36 |
-
bad_tokens = tok(bad_text, return_tensors="pt")[
|
37 |
-
'input_ids'].cuda()[:, :4096-1024]
|
38 |
-
history = None
|
39 |
-
bad_history = None
|
40 |
-
curr_output = list()
|
41 |
-
for i in range(1024):
|
42 |
-
out = m(tokens, past_key_values=history, use_cache=True)
|
43 |
-
logits = out.logits
|
44 |
-
history = out.past_key_values
|
45 |
-
bad_out = m(bad_tokens, past_key_values=bad_history,
|
46 |
-
use_cache=True)
|
47 |
-
bad_logits = bad_out.logits
|
48 |
-
bad_history = bad_out.past_key_values
|
49 |
-
probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu()
|
50 |
-
bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu()
|
51 |
-
logits = torch.log(probs)
|
52 |
-
bad_logits = torch.log(bad_probs)
|
53 |
-
logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1]
|
54 |
-
probs = F.softmax(logits)
|
55 |
-
out = int(torch.multinomial(probs, 1))
|
56 |
-
if out in [50278, 50279, 50277, 1, 0]:
|
57 |
-
break
|
58 |
-
else:
|
59 |
-
curr_output.append(out)
|
60 |
-
out = np.array([out])
|
61 |
-
tokens = torch.from_numpy(np.array([out])).to(
|
62 |
-
tokens.device)
|
63 |
-
bad_tokens = torch.from_numpy(np.array([out])).to(
|
64 |
-
tokens.device)
|
65 |
-
return tok.decode(curr_output)
|
66 |
-
|
67 |
-
|
68 |
-
def generate(text, bad_text=None):
|
69 |
-
stop = StopOnTokens()
|
70 |
-
result = generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True,
|
71 |
-
temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop]))
|
72 |
-
return result[0]["generated_text"].replace(text, "")
|
73 |
-
|
74 |
-
|
75 |
def user(user_message, history):
|
76 |
history = history + [[user_message, ""]]
|
77 |
return "", history, history
|
78 |
|
79 |
|
80 |
def bot(history, curr_system_message):
|
|
|
81 |
messages = curr_system_message + \
|
82 |
"".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]])
|
83 |
for item in history])
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
return history, history
|
88 |
|
89 |
|
@@ -107,5 +86,5 @@ with gr.Blocks() as demo:
|
|
107 |
submit.click(fn=user, inputs=[msg, history], outputs=[msg, chatbot, history], queue=False).then(
|
108 |
fn=bot, inputs=[chatbot, system_msg], outputs=[chatbot, history], queue=True)
|
109 |
clear.click(lambda: [None, []], None, [chatbot, history], queue=False)
|
110 |
-
demo.queue(concurrency_count=
|
111 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
4 |
import time
|
5 |
import numpy as np
|
6 |
from torch.nn import functional as F
|
7 |
import os
|
8 |
+
from threading import Thread
|
9 |
+
|
10 |
print(f"Starting to load the model to memory")
|
11 |
m = AutoModelForCausalLM.from_pretrained(
|
12 |
"stabilityai/stablelm-tuned-alpha-7b", torch_dtype=torch.float16).cuda()
|
|
|
29 |
return True
|
30 |
return False
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
def user(user_message, history):
|
33 |
history = history + [[user_message, ""]]
|
34 |
return "", history, history
|
35 |
|
36 |
|
37 |
def bot(history, curr_system_message):
|
38 |
+
stop = StopOnTokens()
|
39 |
messages = curr_system_message + \
|
40 |
"".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]])
|
41 |
for item in history])
|
42 |
+
|
43 |
+
#model_inputs = tok([messages], return_tensors="pt")['input_ids'].cuda()[:, :4096-1024]
|
44 |
+
model_inputs = tok([messages], return_tensors="pt").to("cuda")
|
45 |
+
streamer = TextIteratorStreamer(tok, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
46 |
+
generate_kwargs = dict(
|
47 |
+
model_inputs,
|
48 |
+
streamer=streamer,
|
49 |
+
max_new_tokens=1024,
|
50 |
+
do_sample=True,
|
51 |
+
top_p=0.95,
|
52 |
+
top_k=1000,
|
53 |
+
temperature=1.0,
|
54 |
+
num_beams=1,
|
55 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
56 |
+
)
|
57 |
+
t = Thread(target=m.generate, kwargs=generate_kwargs)
|
58 |
+
t.start()
|
59 |
+
|
60 |
+
print(history)
|
61 |
+
for new_text in streamer:
|
62 |
+
print(new_text)
|
63 |
+
history[-1][1] += new_text
|
64 |
+
yield history, history
|
65 |
+
|
66 |
return history, history
|
67 |
|
68 |
|
|
|
86 |
submit.click(fn=user, inputs=[msg, history], outputs=[msg, chatbot, history], queue=False).then(
|
87 |
fn=bot, inputs=[chatbot, system_msg], outputs=[chatbot, history], queue=True)
|
88 |
clear.click(lambda: [None, []], None, [chatbot, history], queue=False)
|
89 |
+
demo.queue(concurrency_count=2)
|
90 |
+
demo.launch()
|