|
''' |
|
* Copyright (c) 2022, salesforce.com, inc. |
|
* All rights reserved. |
|
* SPDX-License-Identifier: BSD-3-Clause |
|
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
* By Junnan Li |
|
''' |
|
import argparse |
|
import os |
|
import ruamel_yaml as yaml |
|
import numpy as np |
|
import random |
|
import time |
|
import datetime |
|
import json |
|
from pathlib import Path |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.backends.cudnn as cudnn |
|
import torch.distributed as dist |
|
from torch.utils.data import DataLoader |
|
|
|
from models.blip import blip_decoder |
|
import utils |
|
from data import create_dataset, create_sampler, create_loader |
|
from data.utils import save_result |
|
|
|
@torch.no_grad() |
|
def evaluate(model, data_loader, device, config): |
|
|
|
model.eval() |
|
|
|
metric_logger = utils.MetricLogger(delimiter=" ") |
|
header = 'Evaluation:' |
|
print_freq = 10 |
|
|
|
result = [] |
|
for image, image_id in metric_logger.log_every(data_loader, print_freq, header): |
|
|
|
image = image.to(device) |
|
|
|
captions = model.generate(image, sample=False, num_beams=config['num_beams'], max_length=config['max_length'], |
|
min_length=config['min_length'], repetition_penalty=1.1) |
|
|
|
for caption, img_id in zip(captions, image_id): |
|
result.append({"image_id": img_id.item(), "caption": caption}) |
|
|
|
return result |
|
|
|
|
|
def main(args, config): |
|
utils.init_distributed_mode(args) |
|
|
|
device = torch.device(args.device) |
|
|
|
|
|
seed = args.seed + utils.get_rank() |
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
random.seed(seed) |
|
cudnn.benchmark = True |
|
|
|
|
|
print("Creating captioning dataset") |
|
val_dataset, test_dataset = create_dataset('nocaps', config) |
|
|
|
if args.distributed: |
|
num_tasks = utils.get_world_size() |
|
global_rank = utils.get_rank() |
|
samplers = create_sampler([val_dataset,test_dataset], [False,False], num_tasks, global_rank) |
|
else: |
|
samplers = [None,None] |
|
|
|
val_loader, test_loader = create_loader([val_dataset, test_dataset],samplers, |
|
batch_size=[config['batch_size']]*2,num_workers=[4,4], |
|
is_trains=[False, False], collate_fns=[None,None]) |
|
|
|
|
|
print("Creating model") |
|
model = blip_decoder(pretrained=config['pretrained'], image_size=config['image_size'], vit=config['vit'], |
|
prompt=config['prompt']) |
|
|
|
model = model.to(device) |
|
|
|
model_without_ddp = model |
|
if args.distributed: |
|
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) |
|
model_without_ddp = model.module |
|
|
|
val_result = evaluate(model_without_ddp, val_loader, device, config) |
|
val_result_file = save_result(val_result, args.result_dir, 'val', remove_duplicate='image_id') |
|
test_result = evaluate(model_without_ddp, test_loader, device, config) |
|
test_result_file = save_result(test_result, args.result_dir, 'test', remove_duplicate='image_id') |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--config', default='./configs/nocaps.yaml') |
|
parser.add_argument('--output_dir', default='output/NoCaps') |
|
parser.add_argument('--device', default='cuda') |
|
parser.add_argument('--seed', default=42, type=int) |
|
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') |
|
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') |
|
parser.add_argument('--distributed', default=True, type=bool) |
|
args = parser.parse_args() |
|
|
|
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader) |
|
|
|
args.result_dir = os.path.join(args.output_dir, 'result') |
|
|
|
Path(args.output_dir).mkdir(parents=True, exist_ok=True) |
|
Path(args.result_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
yaml.dump(config, open(os.path.join(args.output_dir, 'config.yaml'), 'w')) |
|
|
|
main(args, config) |