Spaces:
Runtime error
Runtime error
File size: 3,543 Bytes
e2cf2b0 c1a6745 e2cf2b0 c1a6745 e2cf2b0 9a66c24 e2cf2b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import pickle
import imageio
import numpy as np
import scipy.interpolate
import torch
from tqdm import tqdm
import gradio as gr
from huggingface_hub import hf_hub_download
def layout_grid(img, grid_w=None, grid_h=1, float_to_uint8=True, chw_to_hwc=True, to_numpy=True):
batch_size, channels, img_h, img_w = img.shape
if grid_w is None:
grid_w = batch_size // grid_h
assert batch_size == grid_w * grid_h
if float_to_uint8:
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8)
img = img.reshape(grid_h, grid_w, channels, img_h, img_w)
img = img.permute(2, 0, 3, 1, 4)
img = img.reshape(channels, grid_h * img_h, grid_w * img_w)
if chw_to_hwc:
img = img.permute(1, 2, 0)
if to_numpy:
img = img.cpu().numpy()
return img
network_pkl='braingan-400.pkl'
with open(network_pkl, 'rb') as f:
G = pickle.load(f)['G_ema']
def predict(Seed,choices):
device = torch.device('cuda')
G.eval()
G.to(device)
shuffle_seed=None
w_frames=60*4
kind='cubic'
num_keyframes=None
wraps=2
psi=1
device=torch.device('cuda')
if choices=='4x2':
grid_w = 4
grid_h = 2
s1=Seed
seeds=(np.arange(s1-16,s1)).tolist()
if choices=='2x1':
grid_w = 2
grid_h = 1
s1=Seed
seeds=(np.arange(s1-4,s1)).tolist()
mp4='ex.mp4'
truncation_psi=1
num_keyframes=None
if num_keyframes is None:
if len(seeds) % (grid_w*grid_h) != 0:
raise ValueError('Number of input seeds must be divisible by grid W*H')
num_keyframes = len(seeds) // (grid_w*grid_h)
all_seeds = np.zeros(num_keyframes*grid_h*grid_w, dtype=np.int64)
for idx in range(num_keyframes*grid_h*grid_w):
all_seeds[idx] = seeds[idx % len(seeds)]
if shuffle_seed is not None:
rng = np.random.RandomState(seed=shuffle_seed)
rng.shuffle(all_seeds)
zs = torch.from_numpy(np.stack([np.random.RandomState(seed).randn(G.z_dim) for seed in all_seeds])).to(device)
ws = G.mapping(z=zs, c=None, truncation_psi=psi)
_ = G.synthesis(ws[:1]) # warm up
ws = ws.reshape(grid_h, grid_w, num_keyframes, *ws.shape[1:])
# Interpolation.
grid = []
for yi in range(grid_h):
row = []
for xi in range(grid_w):
x = np.arange(-num_keyframes * wraps, num_keyframes * (wraps + 1))
y = np.tile(ws[yi][xi].cpu().numpy(), [wraps * 2 + 1, 1, 1])
interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=0)
row.append(interp)
grid.append(row)
# Render video.
video_out = imageio.get_writer(mp4, mode='I', fps=60, codec='libx264')
for frame_idx in tqdm(range(num_keyframes * w_frames)):
imgs = []
for yi in range(grid_h):
for xi in range(grid_w):
interp = grid[yi][xi]
w = torch.from_numpy(interp(frame_idx / w_frames)).to(device)
img = G.synthesis(ws=w.unsqueeze(0), noise_mode='const')[0]
imgs.append(img)
video_out.append_data(layout_grid(torch.stack(imgs), grid_w=grid_w, grid_h=grid_h))
video_out.close()
return 'ex.mp4'
choices=['4x2','2x1']
interface=gr.Interface(fn=predict, title="Brain MR Image Generation with StyleGAN-2",
description = "",
article = "Author: S.Serdar Helli",
inputs=[gr.inputs.Slider( minimum=16, maximum=2**10,label='Seed'),gr.inputs.Radio( choices=choices, default='4x2',label='Image Grid')],
outputs=gr.outputs.Video(label='Video'))
interface.launch(debug=True) |