Spaces:
Runtime error
Runtime error
File size: 2,097 Bytes
0d04ccc be48827 e2cf2b0 0d04ccc 584eca0 e2cf2b0 ff2c2a9 e9ceefd e2cf2b0 f1076d6 334e27d fb9f5c1 c1a6745 e2cf2b0 fafc0c2 8721178 dad6ea4 cc96327 0d04ccc 0fc4a2a cc96327 0d04ccc 18fd9e7 0d04ccc e2cf2b0 fb9f5c1 b33d32a 5de8c5c 4b08111 0d04ccc e2cf2b0 0d04ccc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 26 21:02:31 2022
@author: pc
"""
import pickle
import numpy as np
import torch
import gradio as gr
import sys
import subprocess
import os
from typing import Tuple
import PIL.Image
from huggingface_hub import hf_hub_download
os.system("git clone https://github.com/NVlabs/stylegan3")
sys.path.append("stylegan3")
DESCRIPTION = f'''This model generates healthy MR Brain Images.
[Example]("https://huggingface.co/spaces/SerdarHelli/Brain-MR-Image-Generation-GAN/blob/main/ex.png")
'''
network_pkl=hf_hub_download("SerdarHelli/Brain-MRI-GAN", filename="brainmrigan.pkl",revision="main")
with open(network_pkl, 'rb') as f:
G = pickle.load(f)['G_ema']
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
G.eval()
G.to(device)
def predict(Seed,noise_mode,truncation_psi):
# Generate images.
z = torch.from_numpy(np.random.RandomState(Seed).randn(1, G.z_dim)).to(device)
label = torch.zeros([1, G.c_dim], device=device)
# Construct an inverse rotation/translation matrix and pass to the generator. The
# generator expects this matrix as an inverse to avoid potentially failing numerical
# operations in the network.
img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode)
img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return (PIL.Image.fromarray(img[0].cpu().numpy()[:,:,0])).resize((512,512))
noises=['const', 'random', 'none']
interface=gr.Interface(fn=predict, title="Brain MR Image Generation with StyleGAN-2",
description = DESCRIPTION,
article = "Author: S.Serdar Helli and Burhan Arat",
inputs=[gr.inputs.Slider( minimum=0, maximum=2**16,label='Seed'),gr.inputs.Radio( choices=noises, default='const',label='Noise Mods'),
gr.inputs.Slider(0, 2, step=0.05, default=1, label='Truncation psi')],
outputs=gr.outputs.Image( type="numpy", label="Output"))
interface.launch(debug=True) |