Spaces:
Runtime error
Runtime error
import gradio as gr | |
import openai | |
import time | |
import re | |
import os | |
# Available models | |
MODELS = [ | |
"Meta-Llama-3.1-405B-Instruct", | |
"Meta-Llama-3.1-70B-Instruct", | |
"Meta-Llama-3.1-8B-Instruct" | |
] | |
# Sambanova API base URL | |
API_BASE = "https://api.sambanova.ai/v1" | |
def create_client(api_key=None): | |
"""Creates an OpenAI client instance.""" | |
if api_key: | |
openai.api_key = api_key | |
else: | |
openai.api_key = os.getenv("API_KEY") | |
return openai.OpenAI(api_key=openai.api_key, base_url=API_BASE) | |
def chat_with_ai(message, chat_history, system_prompt): | |
"""Formats the chat history for the API call.""" | |
messages = [{"role": "system", "content": system_prompt}] | |
print(type(chat_history)) | |
for tup in chat_history: | |
print(type(tup)) | |
first_key = list(tup.keys())[0] # First key | |
last_key = list(tup.keys())[-1] # Last key | |
messages.append({"role": "user", "content": tup[first_key]}) | |
messages.append({"role": "assistant", "content": tup[last_key]}) | |
messages.append({"role": "user", "content": message}) | |
return messages | |
def respond(message, chat_history, model, system_prompt, thinking_budget, api_key): | |
"""Sends the message to the API and gets the response.""" | |
client = create_client(api_key) | |
messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget)) | |
start_time = time.time() | |
try: | |
completion = client.chat.completions.create(model=model, messages=messages) | |
response = completion.choices[0].message.content | |
thinking_time = time.time() - start_time | |
return response, thinking_time | |
except Exception as e: | |
error_message = f"Error: {str(e)}" | |
return error_message, time.time() - start_time | |
def parse_response(response): | |
"""Parses the response from the API.""" | |
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL) | |
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL) | |
answer = answer_match.group(1).strip() if answer_match else "" | |
reflection = reflection_match.group(1).strip() if reflection_match else "" | |
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL) | |
return answer, reflection, steps | |
def generate(message, history, model, system_prompt, thinking_budget, api_key): | |
"""Generates the chatbot response.""" | |
response, thinking_time = respond(message, history, model, system_prompt, thinking_budget, api_key) | |
if response.startswith("Error:"): | |
return history + [({"role": "system", "content": response},)], "" | |
answer, reflection, steps = parse_response(response) | |
messages = [] | |
messages.append({"role": "user", "content": message}) | |
formatted_steps = [f"Step {i}: {step}" for i, step in enumerate(steps, 1)] | |
all_steps = "\n".join(formatted_steps) + f"\n\nReflection: {reflection}" | |
messages.append({"role": "assistant", "content": all_steps, "metadata": {"title": f"Thinking Time: {thinking_time:.2f} sec"}}) | |
messages.append({"role": "assistant", "content": answer}) | |
return history + messages, "" | |
# Define the default system prompt | |
DEFAULT_SYSTEM_PROMPT = """ | |
You are a helpful assistant in normal conversation. | |
When given a problem to solve, you are an expert problem-solving assistant. | |
Your task is to provide a detailed, step-by-step solution to a given question. | |
Follow these instructions carefully: | |
1. Read the given question carefully and reset counter between <count> and </count> to {budget} | |
2. Generate a detailed, logical step-by-step solution. | |
3. Enclose each step of your solution within <step> and </step> tags. | |
4. You are allowed to use at most {budget} steps (starting budget), | |
keep track of it by counting down within tags <count> </count>, | |
STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them. | |
5. Do a self-reflection when you are unsure about how to proceed, | |
based on the self-reflection and reward, decides whether you need to return | |
to the previous steps. | |
6. After completing the solution steps, reorganize and synthesize the steps | |
into the final answer within <answer> and </answer> tags. | |
7. Provide a critical, honest and subjective self-evaluation of your reasoning | |
process within <reflection> and </reflection> tags. | |
8. Assign a quality score to your solution as a float between 0.0 (lowest | |
quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags. | |
Example format: | |
<count> [starting budget] </count> | |
<step> [Content of step 1] </step> | |
<count> [remaining budget] </count> | |
<step> [Content of step 2] </step> | |
<reflection> [Evaluation of the steps so far] </reflection> | |
<reward> [Float between 0.0 and 1.0] </reward> | |
<count> [remaining budget] </count> | |
<step> [Content of step 3 or Content of some previous step] </step> | |
<count> [remaining budget] </count> | |
... | |
<step> [Content of final step] </step> | |
<count> [remaining budget] </count> | |
<answer> [Final Answer] </answer> (must give final answer in this format) | |
<reflection> [Evaluation of the solution] </reflection> | |
<reward> [Float between 0.0 and 1.0] </reward> | |
""" | |
with gr.Blocks() as demo: | |
gr.Markdown("# Llama3.1-Instruct-O1") | |
gr.Markdown("[Powered by Llama3.1 models through SambaNova Cloud API](https://sambanova.ai/fast-api?api_ref=907266)") | |
with gr.Row(): | |
api_key = gr.Textbox(label="API Key", type="password", placeholder="(Optional) Enter your API key here for more availability") | |
with gr.Row(): | |
model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]) | |
thinking_budget = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Thinking Budget", info="maximum times a model can think") | |
chatbot = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", type="messages") | |
msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...") | |
gr.Button("Clear Chat").click(lambda: ([], ""), inputs=None, outputs=[chatbot, msg]) | |
system_prompt = gr.Textbox(label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, lines=15, interactive=True) | |
msg.submit(generate, inputs=[msg, chatbot, model, system_prompt, thinking_budget, api_key], outputs=[chatbot, msg]) | |
demo.launch(share=True, show_api=False) |