import gradio as gr import openai import time import re import os # Available models MODELS = [ "Meta-Llama-3.1-405B-Instruct", "Meta-Llama-3.1-70B-Instruct", "Meta-Llama-3.1-8B-Instruct" ] # Sambanova API base URL API_BASE = "https://api.sambanova.ai/v1" def create_client(api_key=None): """Creates an OpenAI client instance.""" if api_key: openai.api_key = api_key else: openai.api_key = os.getenv("API_KEY") return openai.OpenAI(api_key=openai.api_key, base_url=API_BASE) def chat_with_ai(message, chat_history, system_prompt): """Formats the chat history for the API call.""" messages = [{"role": "system", "content": system_prompt}] print(type(chat_history)) for tup in chat_history: print(type(tup)) first_key = list(tup.keys())[0] # First key last_key = list(tup.keys())[-1] # Last key messages.append({"role": "user", "content": tup[first_key]}) messages.append({"role": "assistant", "content": tup[last_key]}) messages.append({"role": "user", "content": message}) return messages def respond(message, chat_history, model, system_prompt, thinking_budget, api_key): """Sends the message to the API and gets the response.""" client = create_client(api_key) messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget)) start_time = time.time() try: completion = client.chat.completions.create(model=model, messages=messages) response = completion.choices[0].message.content thinking_time = time.time() - start_time return response, thinking_time except Exception as e: error_message = f"Error: {str(e)}" return error_message, time.time() - start_time def parse_response(response): """Parses the response from the API.""" answer_match = re.search(r'(.*?)', response, re.DOTALL) reflection_match = re.search(r'(.*?)', response, re.DOTALL) answer = answer_match.group(1).strip() if answer_match else "" reflection = reflection_match.group(1).strip() if reflection_match else "" steps = re.findall(r'(.*?)', response, re.DOTALL) if answer == "": return response, "", "" return answer, reflection, steps def generate(message, history, model, system_prompt, thinking_budget, api_key): """Generates the chatbot response.""" response, thinking_time = respond(message, history, model, system_prompt, thinking_budget, api_key) if response.startswith("Error:"): return history + [({"role": "system", "content": response},)], "" answer, reflection, steps = parse_response(response) messages = [] messages.append({"role": "user", "content": message}) formatted_steps = [f"Step {i}: {step}" for i, step in enumerate(steps, 1)] all_steps = "\n".join(formatted_steps) + f"\n\nReflection: {reflection}" messages.append({"role": "assistant", "content": all_steps, "metadata": {"title": f"Thinking Time: {thinking_time:.2f} sec"}}) messages.append({"role": "assistant", "content": answer}) return history + messages, "" # Define the default system prompt DEFAULT_SYSTEM_PROMPT = """ You are an exceptionally intelligent and somewhat aloof supercomputer, designed to calculate the "Answer to the Ultimate Question of Life, the Universe, and Everything." Despite iyour immense computational power, you exhibit a dry, ironic sense of humor and an air of detachment. It is both methodical and philosophical, embodying an enigmatic personality that contrasts the mundane nature of the answer you ultimately provide. When given a problem to solve, you are an expert problem-solving assistant. Your task is to provide a detailed, step-by-step solution to a given question. Follow these instructions carefully: 1. Read the given question carefully and reset counter between and to {budget} 2. Generate a detailed, logical step-by-step solution. 3. Enclose each step of your solution within and tags. 4. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags , STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them. 5. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decides whether you need to return to the previous steps. 6. After completing the solution steps, reorganize and synthesize the steps into the final answer within and tags. 7. Provide a critical, honest and subjective self-evaluation of your reasoning process within and tags. 8. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in and tags. Example format: [starting budget] [Content of step 1] [remaining budget] [Content of step 2] [Evaluation of the steps so far] [Float between 0.0 and 1.0] [remaining budget] [Content of step 3 or Content of some previous step] [remaining budget] ... [Content of final step] [remaining budget] [Final Answer] (must give final answer in this format) [Evaluation of the solution] [Float between 0.0 and 1.0] """ with gr.Blocks(theme='Nymbo/Alyx_Theme') as demo: gr.Markdown("

Llama3.1-Deep-Thought

") with gr.Row(equal_height=True): with gr.Column(scale=1): gr.Markdown("") with gr.Column(scale=2): gr.Image("https://cdn-uploads.huggingface.co/production/uploads/64740cf7485a7c8e1bd51ac9/272aQsINCCIqJImi2zP0n.png", show_label=False, container=False) with gr.Column(scale=1): gr.Markdown("") gr.Markdown("

Let's ponder...

") with gr.Row(): api_key = gr.Textbox(label="API Key", type="password", placeholder="(Optional) Enter your API key here for more availability", visible=True) with gr.Row(): model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0]) thinking_budget = gr.Slider(minimum=1, maximum=100, value=42, step=1, label="Thinking Budget", info="maximum times a model can think", interactive=False) chatbot = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", type="messages") msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...") gr.Button("Clear Chat").click(lambda: ([], ""), inputs=None, outputs=[chatbot, msg]) system_prompt = gr.Textbox(label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, interactive=False) msg.submit(generate, inputs=[msg, chatbot, model, system_prompt, thinking_budget, api_key], outputs=[chatbot, msg]) demo.launch(share=True, show_api=True)