File size: 18,640 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import json
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any, Optional, Union

from core.agent.base_agent_runner import BaseAgentRunner
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
from core.file import file_manager
from core.model_runtime.entities import (
    AssistantPromptMessage,
    LLMResult,
    LLMResultChunk,
    LLMResultChunkDelta,
    LLMUsage,
    PromptMessage,
    PromptMessageContent,
    PromptMessageContentType,
    SystemPromptMessage,
    TextPromptMessageContent,
    ToolPromptMessage,
    UserPromptMessage,
)
from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Message

logger = logging.getLogger(__name__)


class FunctionCallAgentRunner(BaseAgentRunner):
    def run(self, message: Message, query: str, **kwargs: Any) -> Generator[LLMResultChunk, None, None]:
        """
        Run FunctionCall agent application
        """
        self.query = query
        app_generate_entity = self.application_generate_entity

        app_config = self.app_config

        # convert tools into ModelRuntime Tool format
        tool_instances, prompt_messages_tools = self._init_prompt_tools()

        iteration_step = 1
        max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1

        # continue to run until there is not any tool call
        function_call_state = True
        llm_usage = {"usage": None}
        final_answer = ""

        # get tracing instance
        trace_manager = app_generate_entity.trace_manager

        def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
            if not final_llm_usage_dict["usage"]:
                final_llm_usage_dict["usage"] = usage
            else:
                llm_usage = final_llm_usage_dict["usage"]
                llm_usage.prompt_tokens += usage.prompt_tokens
                llm_usage.completion_tokens += usage.completion_tokens
                llm_usage.prompt_price += usage.prompt_price
                llm_usage.completion_price += usage.completion_price
                llm_usage.total_price += usage.total_price

        model_instance = self.model_instance

        while function_call_state and iteration_step <= max_iteration_steps:
            function_call_state = False

            if iteration_step == max_iteration_steps:
                # the last iteration, remove all tools
                prompt_messages_tools = []

            message_file_ids = []
            agent_thought = self.create_agent_thought(
                message_id=message.id, message="", tool_name="", tool_input="", messages_ids=message_file_ids
            )

            # recalc llm max tokens
            prompt_messages = self._organize_prompt_messages()
            self.recalc_llm_max_tokens(self.model_config, prompt_messages)
            # invoke model
            chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
                prompt_messages=prompt_messages,
                model_parameters=app_generate_entity.model_conf.parameters,
                tools=prompt_messages_tools,
                stop=app_generate_entity.model_conf.stop,
                stream=self.stream_tool_call,
                user=self.user_id,
                callbacks=[],
            )

            tool_calls: list[tuple[str, str, dict[str, Any]]] = []

            # save full response
            response = ""

            # save tool call names and inputs
            tool_call_names = ""
            tool_call_inputs = ""

            current_llm_usage = None

            if self.stream_tool_call:
                is_first_chunk = True
                for chunk in chunks:
                    if is_first_chunk:
                        self.queue_manager.publish(
                            QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
                        )
                        is_first_chunk = False
                    # check if there is any tool call
                    if self.check_tool_calls(chunk):
                        function_call_state = True
                        tool_calls.extend(self.extract_tool_calls(chunk))
                        tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
                        try:
                            tool_call_inputs = json.dumps(
                                {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
                            )
                        except json.JSONDecodeError as e:
                            # ensure ascii to avoid encoding error
                            tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})

                    if chunk.delta.message and chunk.delta.message.content:
                        if isinstance(chunk.delta.message.content, list):
                            for content in chunk.delta.message.content:
                                response += content.data
                        else:
                            response += chunk.delta.message.content

                    if chunk.delta.usage:
                        increase_usage(llm_usage, chunk.delta.usage)
                        current_llm_usage = chunk.delta.usage

                    yield chunk
            else:
                result: LLMResult = chunks
                # check if there is any tool call
                if self.check_blocking_tool_calls(result):
                    function_call_state = True
                    tool_calls.extend(self.extract_blocking_tool_calls(result))
                    tool_call_names = ";".join([tool_call[1] for tool_call in tool_calls])
                    try:
                        tool_call_inputs = json.dumps(
                            {tool_call[1]: tool_call[2] for tool_call in tool_calls}, ensure_ascii=False
                        )
                    except json.JSONDecodeError as e:
                        # ensure ascii to avoid encoding error
                        tool_call_inputs = json.dumps({tool_call[1]: tool_call[2] for tool_call in tool_calls})

                if result.usage:
                    increase_usage(llm_usage, result.usage)
                    current_llm_usage = result.usage

                if result.message and result.message.content:
                    if isinstance(result.message.content, list):
                        for content in result.message.content:
                            response += content.data
                    else:
                        response += result.message.content

                if not result.message.content:
                    result.message.content = ""

                self.queue_manager.publish(
                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
                )

                yield LLMResultChunk(
                    model=model_instance.model,
                    prompt_messages=result.prompt_messages,
                    system_fingerprint=result.system_fingerprint,
                    delta=LLMResultChunkDelta(
                        index=0,
                        message=result.message,
                        usage=result.usage,
                    ),
                )

            assistant_message = AssistantPromptMessage(content="", tool_calls=[])
            if tool_calls:
                assistant_message.tool_calls = [
                    AssistantPromptMessage.ToolCall(
                        id=tool_call[0],
                        type="function",
                        function=AssistantPromptMessage.ToolCall.ToolCallFunction(
                            name=tool_call[1], arguments=json.dumps(tool_call[2], ensure_ascii=False)
                        ),
                    )
                    for tool_call in tool_calls
                ]
            else:
                assistant_message.content = response

            self._current_thoughts.append(assistant_message)

            # save thought
            self.save_agent_thought(
                agent_thought=agent_thought,
                tool_name=tool_call_names,
                tool_input=tool_call_inputs,
                thought=response,
                tool_invoke_meta=None,
                observation=None,
                answer=response,
                messages_ids=[],
                llm_usage=current_llm_usage,
            )
            self.queue_manager.publish(
                QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
            )

            final_answer += response + "\n"

            # call tools
            tool_responses = []
            for tool_call_id, tool_call_name, tool_call_args in tool_calls:
                tool_instance = tool_instances.get(tool_call_name)
                if not tool_instance:
                    tool_response = {
                        "tool_call_id": tool_call_id,
                        "tool_call_name": tool_call_name,
                        "tool_response": f"there is not a tool named {tool_call_name}",
                        "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict(),
                    }
                else:
                    # invoke tool
                    tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
                        tool=tool_instance,
                        tool_parameters=tool_call_args,
                        user_id=self.user_id,
                        tenant_id=self.tenant_id,
                        message=self.message,
                        invoke_from=self.application_generate_entity.invoke_from,
                        agent_tool_callback=self.agent_callback,
                        trace_manager=trace_manager,
                    )
                    # publish files
                    for message_file_id, save_as in message_files:
                        if save_as:
                            self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)

                        # publish message file
                        self.queue_manager.publish(
                            QueueMessageFileEvent(message_file_id=message_file_id), PublishFrom.APPLICATION_MANAGER
                        )
                        # add message file ids
                        message_file_ids.append(message_file_id)

                    tool_response = {
                        "tool_call_id": tool_call_id,
                        "tool_call_name": tool_call_name,
                        "tool_response": tool_invoke_response,
                        "meta": tool_invoke_meta.to_dict(),
                    }

                tool_responses.append(tool_response)
                if tool_response["tool_response"] is not None:
                    self._current_thoughts.append(
                        ToolPromptMessage(
                            content=tool_response["tool_response"],
                            tool_call_id=tool_call_id,
                            name=tool_call_name,
                        )
                    )

            if len(tool_responses) > 0:
                # save agent thought
                self.save_agent_thought(
                    agent_thought=agent_thought,
                    tool_name=None,
                    tool_input=None,
                    thought=None,
                    tool_invoke_meta={
                        tool_response["tool_call_name"]: tool_response["meta"] for tool_response in tool_responses
                    },
                    observation={
                        tool_response["tool_call_name"]: tool_response["tool_response"]
                        for tool_response in tool_responses
                    },
                    answer=None,
                    messages_ids=message_file_ids,
                )
                self.queue_manager.publish(
                    QueueAgentThoughtEvent(agent_thought_id=agent_thought.id), PublishFrom.APPLICATION_MANAGER
                )

            # update prompt tool
            for prompt_tool in prompt_messages_tools:
                self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)

            iteration_step += 1

        self.update_db_variables(self.variables_pool, self.db_variables_pool)
        # publish end event
        self.queue_manager.publish(
            QueueMessageEndEvent(
                llm_result=LLMResult(
                    model=model_instance.model,
                    prompt_messages=prompt_messages,
                    message=AssistantPromptMessage(content=final_answer),
                    usage=llm_usage["usage"] or LLMUsage.empty_usage(),
                    system_fingerprint="",
                )
            ),
            PublishFrom.APPLICATION_MANAGER,
        )

    def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
        """
        Check if there is any tool call in llm result chunk
        """
        if llm_result_chunk.delta.message.tool_calls:
            return True
        return False

    def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
        """
        Check if there is any blocking tool call in llm result
        """
        if llm_result.message.tool_calls:
            return True
        return False

    def extract_tool_calls(
        self, llm_result_chunk: LLMResultChunk
    ) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
        """
        Extract tool calls from llm result chunk

        Returns:
            List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
        """
        tool_calls = []
        for prompt_message in llm_result_chunk.delta.message.tool_calls:
            args = {}
            if prompt_message.function.arguments != "":
                args = json.loads(prompt_message.function.arguments)

            tool_calls.append(
                (
                    prompt_message.id,
                    prompt_message.function.name,
                    args,
                )
            )

        return tool_calls

    def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
        """
        Extract blocking tool calls from llm result

        Returns:
            List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
        """
        tool_calls = []
        for prompt_message in llm_result.message.tool_calls:
            args = {}
            if prompt_message.function.arguments != "":
                args = json.loads(prompt_message.function.arguments)

            tool_calls.append(
                (
                    prompt_message.id,
                    prompt_message.function.name,
                    args,
                )
            )

        return tool_calls

    def _init_system_message(
        self, prompt_template: str, prompt_messages: Optional[list[PromptMessage]] = None
    ) -> list[PromptMessage]:
        """
        Initialize system message
        """
        if not prompt_messages and prompt_template:
            return [
                SystemPromptMessage(content=prompt_template),
            ]

        if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
            prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))

        return prompt_messages

    def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
        """
        Organize user query
        """
        if self.files:
            prompt_message_contents: list[PromptMessageContent] = []
            prompt_message_contents.append(TextPromptMessageContent(data=query))
            for file_obj in self.files:
                prompt_message_contents.append(file_manager.to_prompt_message_content(file_obj))

            prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
        else:
            prompt_messages.append(UserPromptMessage(content=query))

        return prompt_messages

    def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
        """
        As for now, gpt supports both fc and vision at the first iteration.
        We need to remove the image messages from the prompt messages at the first iteration.
        """
        prompt_messages = deepcopy(prompt_messages)

        for prompt_message in prompt_messages:
            if isinstance(prompt_message, UserPromptMessage):
                if isinstance(prompt_message.content, list):
                    prompt_message.content = "\n".join(
                        [
                            content.data
                            if content.type == PromptMessageContentType.TEXT
                            else "[image]"
                            if content.type == PromptMessageContentType.IMAGE
                            else "[file]"
                            for content in prompt_message.content
                        ]
                    )

        return prompt_messages

    def _organize_prompt_messages(self):
        prompt_template = self.app_config.prompt_template.simple_prompt_template or ""
        self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
        query_prompt_messages = self._organize_user_query(self.query, [])

        self.history_prompt_messages = AgentHistoryPromptTransform(
            model_config=self.model_config,
            prompt_messages=[*query_prompt_messages, *self._current_thoughts],
            history_messages=self.history_prompt_messages,
            memory=self.memory,
        ).get_prompt()

        prompt_messages = [*self.history_prompt_messages, *query_prompt_messages, *self._current_thoughts]
        if len(self._current_thoughts) != 0:
            # clear messages after the first iteration
            prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
        return prompt_messages