File size: 11,180 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import json
from typing import Optional, Union

from core.app.apps.advanced_chat.app_config_manager import AdvancedChatAppConfigManager
from core.app.entities.app_invoke_entities import InvokeFrom
from core.llm_generator.llm_generator import LLMGenerator
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.ops.entities.trace_entity import TraceTaskName
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
from core.ops.utils import measure_time
from extensions.ext_database import db
from libs.infinite_scroll_pagination import InfiniteScrollPagination
from models.account import Account
from models.model import App, AppMode, AppModelConfig, EndUser, Message, MessageFeedback
from services.conversation_service import ConversationService
from services.errors.conversation import ConversationCompletedError, ConversationNotExistsError
from services.errors.message import (
    FirstMessageNotExistsError,
    LastMessageNotExistsError,
    MessageNotExistsError,
    SuggestedQuestionsAfterAnswerDisabledError,
)
from services.workflow_service import WorkflowService


class MessageService:
    @classmethod
    def pagination_by_first_id(
        cls,
        app_model: App,
        user: Optional[Union[Account, EndUser]],
        conversation_id: str,
        first_id: Optional[str],
        limit: int,
        order: str = "asc",
    ) -> InfiniteScrollPagination:
        if not user:
            return InfiniteScrollPagination(data=[], limit=limit, has_more=False)

        if not conversation_id:
            return InfiniteScrollPagination(data=[], limit=limit, has_more=False)

        conversation = ConversationService.get_conversation(
            app_model=app_model, user=user, conversation_id=conversation_id
        )

        if first_id:
            first_message = (
                db.session.query(Message)
                .filter(Message.conversation_id == conversation.id, Message.id == first_id)
                .first()
            )

            if not first_message:
                raise FirstMessageNotExistsError()

            history_messages = (
                db.session.query(Message)
                .filter(
                    Message.conversation_id == conversation.id,
                    Message.created_at < first_message.created_at,
                    Message.id != first_message.id,
                )
                .order_by(Message.created_at.desc())
                .limit(limit)
                .all()
            )
        else:
            history_messages = (
                db.session.query(Message)
                .filter(Message.conversation_id == conversation.id)
                .order_by(Message.created_at.desc())
                .limit(limit)
                .all()
            )

        has_more = False
        if len(history_messages) == limit:
            current_page_first_message = history_messages[-1]
            rest_count = (
                db.session.query(Message)
                .filter(
                    Message.conversation_id == conversation.id,
                    Message.created_at < current_page_first_message.created_at,
                    Message.id != current_page_first_message.id,
                )
                .count()
            )

            if rest_count > 0:
                has_more = True

        if order == "asc":
            history_messages = list(reversed(history_messages))

        return InfiniteScrollPagination(data=history_messages, limit=limit, has_more=has_more)

    @classmethod
    def pagination_by_last_id(
        cls,
        app_model: App,
        user: Optional[Union[Account, EndUser]],
        last_id: Optional[str],
        limit: int,
        conversation_id: Optional[str] = None,
        include_ids: Optional[list] = None,
    ) -> InfiniteScrollPagination:
        if not user:
            return InfiniteScrollPagination(data=[], limit=limit, has_more=False)

        base_query = db.session.query(Message)

        if conversation_id is not None:
            conversation = ConversationService.get_conversation(
                app_model=app_model, user=user, conversation_id=conversation_id
            )

            base_query = base_query.filter(Message.conversation_id == conversation.id)

        if include_ids is not None:
            base_query = base_query.filter(Message.id.in_(include_ids))

        if last_id:
            last_message = base_query.filter(Message.id == last_id).first()

            if not last_message:
                raise LastMessageNotExistsError()

            history_messages = (
                base_query.filter(Message.created_at < last_message.created_at, Message.id != last_message.id)
                .order_by(Message.created_at.desc())
                .limit(limit)
                .all()
            )
        else:
            history_messages = base_query.order_by(Message.created_at.desc()).limit(limit).all()

        has_more = False
        if len(history_messages) == limit:
            current_page_first_message = history_messages[-1]
            rest_count = base_query.filter(
                Message.created_at < current_page_first_message.created_at, Message.id != current_page_first_message.id
            ).count()

            if rest_count > 0:
                has_more = True

        return InfiniteScrollPagination(data=history_messages, limit=limit, has_more=has_more)

    @classmethod
    def create_feedback(
        cls, app_model: App, message_id: str, user: Optional[Union[Account, EndUser]], rating: Optional[str]
    ) -> MessageFeedback:
        if not user:
            raise ValueError("user cannot be None")

        message = cls.get_message(app_model=app_model, user=user, message_id=message_id)

        feedback = message.user_feedback if isinstance(user, EndUser) else message.admin_feedback

        if not rating and feedback:
            db.session.delete(feedback)
        elif rating and feedback:
            feedback.rating = rating
        elif not rating and not feedback:
            raise ValueError("rating cannot be None when feedback not exists")
        else:
            feedback = MessageFeedback(
                app_id=app_model.id,
                conversation_id=message.conversation_id,
                message_id=message.id,
                rating=rating,
                from_source=("user" if isinstance(user, EndUser) else "admin"),
                from_end_user_id=(user.id if isinstance(user, EndUser) else None),
                from_account_id=(user.id if isinstance(user, Account) else None),
            )
            db.session.add(feedback)

        db.session.commit()

        return feedback

    @classmethod
    def get_message(cls, app_model: App, user: Optional[Union[Account, EndUser]], message_id: str):
        message = (
            db.session.query(Message)
            .filter(
                Message.id == message_id,
                Message.app_id == app_model.id,
                Message.from_source == ("api" if isinstance(user, EndUser) else "console"),
                Message.from_end_user_id == (user.id if isinstance(user, EndUser) else None),
                Message.from_account_id == (user.id if isinstance(user, Account) else None),
            )
            .first()
        )

        if not message:
            raise MessageNotExistsError()

        return message

    @classmethod
    def get_suggested_questions_after_answer(
        cls, app_model: App, user: Optional[Union[Account, EndUser]], message_id: str, invoke_from: InvokeFrom
    ) -> list[Message]:
        if not user:
            raise ValueError("user cannot be None")

        message = cls.get_message(app_model=app_model, user=user, message_id=message_id)

        conversation = ConversationService.get_conversation(
            app_model=app_model, conversation_id=message.conversation_id, user=user
        )

        if not conversation:
            raise ConversationNotExistsError()

        if conversation.status != "normal":
            raise ConversationCompletedError()

        model_manager = ModelManager()

        if app_model.mode == AppMode.ADVANCED_CHAT.value:
            workflow_service = WorkflowService()
            if invoke_from == InvokeFrom.DEBUGGER:
                workflow = workflow_service.get_draft_workflow(app_model=app_model)
            else:
                workflow = workflow_service.get_published_workflow(app_model=app_model)

            if workflow is None:
                return []

            app_config = AdvancedChatAppConfigManager.get_app_config(app_model=app_model, workflow=workflow)

            if not app_config.additional_features.suggested_questions_after_answer:
                raise SuggestedQuestionsAfterAnswerDisabledError()

            model_instance = model_manager.get_default_model_instance(
                tenant_id=app_model.tenant_id, model_type=ModelType.LLM
            )
        else:
            if not conversation.override_model_configs:
                app_model_config = (
                    db.session.query(AppModelConfig)
                    .filter(
                        AppModelConfig.id == conversation.app_model_config_id, AppModelConfig.app_id == app_model.id
                    )
                    .first()
                )
            else:
                conversation_override_model_configs = json.loads(conversation.override_model_configs)
                app_model_config = AppModelConfig(
                    id=conversation.app_model_config_id,
                    app_id=app_model.id,
                )

                app_model_config = app_model_config.from_model_config_dict(conversation_override_model_configs)

            suggested_questions_after_answer = app_model_config.suggested_questions_after_answer_dict
            if suggested_questions_after_answer.get("enabled", False) is False:
                raise SuggestedQuestionsAfterAnswerDisabledError()

            model_instance = model_manager.get_model_instance(
                tenant_id=app_model.tenant_id,
                provider=app_model_config.model_dict["provider"],
                model_type=ModelType.LLM,
                model=app_model_config.model_dict["name"],
            )

        # get memory of conversation (read-only)
        memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)

        histories = memory.get_history_prompt_text(
            max_token_limit=3000,
            message_limit=3,
        )

        with measure_time() as timer:
            questions = LLMGenerator.generate_suggested_questions_after_answer(
                tenant_id=app_model.tenant_id, histories=histories
            )

        # get tracing instance
        trace_manager = TraceQueueManager(app_id=app_model.id)
        trace_manager.add_trace_task(
            TraceTask(
                TraceTaskName.SUGGESTED_QUESTION_TRACE, message_id=message_id, suggested_question=questions, timer=timer
            )
        )

        return questions