File size: 20,680 Bytes
a8b3f00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import logging
import os
from collections.abc import Callable, Generator, Iterable, Sequence
from typing import IO, Any, Optional, Union, cast

from core.entities.embedding_type import EmbeddingInputType
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
from core.entities.provider_entities import ModelLoadBalancingConfiguration
from core.errors.error import ProviderTokenNotInitError
from core.model_runtime.callbacks.base_callback import Callback
from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.entities.rerank_entities import RerankResult
from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.errors.invoke import InvokeAuthorizationError, InvokeConnectionError, InvokeRateLimitError
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
from core.model_runtime.model_providers.__base.moderation_model import ModerationModel
from core.model_runtime.model_providers.__base.rerank_model import RerankModel
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
from core.model_runtime.model_providers.__base.tts_model import TTSModel
from core.provider_manager import ProviderManager
from extensions.ext_redis import redis_client
from models.provider import ProviderType

logger = logging.getLogger(__name__)


class ModelInstance:
    """
    Model instance class
    """

    def __init__(self, provider_model_bundle: ProviderModelBundle, model: str) -> None:
        self.provider_model_bundle = provider_model_bundle
        self.model = model
        self.provider = provider_model_bundle.configuration.provider.provider
        self.credentials = self._fetch_credentials_from_bundle(provider_model_bundle, model)
        self.model_type_instance = self.provider_model_bundle.model_type_instance
        self.load_balancing_manager = self._get_load_balancing_manager(
            configuration=provider_model_bundle.configuration,
            model_type=provider_model_bundle.model_type_instance.model_type,
            model=model,
            credentials=self.credentials,
        )

    @staticmethod
    def _fetch_credentials_from_bundle(provider_model_bundle: ProviderModelBundle, model: str) -> dict:
        """
        Fetch credentials from provider model bundle
        :param provider_model_bundle: provider model bundle
        :param model: model name
        :return:
        """
        configuration = provider_model_bundle.configuration
        model_type = provider_model_bundle.model_type_instance.model_type
        credentials = configuration.get_current_credentials(model_type=model_type, model=model)

        if credentials is None:
            raise ProviderTokenNotInitError(f"Model {model} credentials is not initialized.")

        return credentials

    @staticmethod
    def _get_load_balancing_manager(
        configuration: ProviderConfiguration, model_type: ModelType, model: str, credentials: dict
    ) -> Optional["LBModelManager"]:
        """
        Get load balancing model credentials
        :param configuration: provider configuration
        :param model_type: model type
        :param model: model name
        :param credentials: model credentials
        :return:
        """
        if configuration.model_settings and configuration.using_provider_type == ProviderType.CUSTOM:
            current_model_setting = None
            # check if model is disabled by admin
            for model_setting in configuration.model_settings:
                if model_setting.model_type == model_type and model_setting.model == model:
                    current_model_setting = model_setting
                    break

            # check if load balancing is enabled
            if current_model_setting and current_model_setting.load_balancing_configs:
                # use load balancing proxy to choose credentials
                lb_model_manager = LBModelManager(
                    tenant_id=configuration.tenant_id,
                    provider=configuration.provider.provider,
                    model_type=model_type,
                    model=model,
                    load_balancing_configs=current_model_setting.load_balancing_configs,
                    managed_credentials=credentials if configuration.custom_configuration.provider else None,
                )

                return lb_model_manager

        return None

    def invoke_llm(
        self,
        prompt_messages: list[PromptMessage],
        model_parameters: Optional[dict] = None,
        tools: Sequence[PromptMessageTool] | None = None,
        stop: Optional[list[str]] = None,
        stream: bool = True,
        user: Optional[str] = None,
        callbacks: Optional[list[Callback]] = None,
    ) -> Union[LLMResult, Generator]:
        """
        Invoke large language model

        :param prompt_messages: prompt messages
        :param model_parameters: model parameters
        :param tools: tools for tool calling
        :param stop: stop words
        :param stream: is stream response
        :param user: unique user id
        :param callbacks: callbacks
        :return: full response or stream response chunk generator result
        """
        if not isinstance(self.model_type_instance, LargeLanguageModel):
            raise Exception("Model type instance is not LargeLanguageModel")

        self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
        return self._round_robin_invoke(
            function=self.model_type_instance.invoke,
            model=self.model,
            credentials=self.credentials,
            prompt_messages=prompt_messages,
            model_parameters=model_parameters,
            tools=tools,
            stop=stop,
            stream=stream,
            user=user,
            callbacks=callbacks,
        )

    def get_llm_num_tokens(
        self, prompt_messages: list[PromptMessage], tools: Optional[list[PromptMessageTool]] = None
    ) -> int:
        """
        Get number of tokens for llm

        :param prompt_messages: prompt messages
        :param tools: tools for tool calling
        :return:
        """
        if not isinstance(self.model_type_instance, LargeLanguageModel):
            raise Exception("Model type instance is not LargeLanguageModel")

        self.model_type_instance = cast(LargeLanguageModel, self.model_type_instance)
        return self._round_robin_invoke(
            function=self.model_type_instance.get_num_tokens,
            model=self.model,
            credentials=self.credentials,
            prompt_messages=prompt_messages,
            tools=tools,
        )

    def invoke_text_embedding(
        self, texts: list[str], user: Optional[str] = None, input_type: EmbeddingInputType = EmbeddingInputType.DOCUMENT
    ) -> TextEmbeddingResult:
        """
        Invoke large language model

        :param texts: texts to embed
        :param user: unique user id
        :param input_type: input type
        :return: embeddings result
        """
        if not isinstance(self.model_type_instance, TextEmbeddingModel):
            raise Exception("Model type instance is not TextEmbeddingModel")

        self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
        return self._round_robin_invoke(
            function=self.model_type_instance.invoke,
            model=self.model,
            credentials=self.credentials,
            texts=texts,
            user=user,
            input_type=input_type,
        )

    def get_text_embedding_num_tokens(self, texts: list[str]) -> int:
        """
        Get number of tokens for text embedding

        :param texts: texts to embed
        :return:
        """
        if not isinstance(self.model_type_instance, TextEmbeddingModel):
            raise Exception("Model type instance is not TextEmbeddingModel")

        self.model_type_instance = cast(TextEmbeddingModel, self.model_type_instance)
        return self._round_robin_invoke(
            function=self.model_type_instance.get_num_tokens,
            model=self.model,
            credentials=self.credentials,
            texts=texts,
        )

    def invoke_rerank(
        self,
        query: str,
        docs: list[str],
        score_threshold: Optional[float] = None,
        top_n: Optional[int] = None,
        user: Optional[str] = None,
    ) -> RerankResult:
        """
        Invoke rerank model

        :param query: search query
        :param docs: docs for reranking
        :param score_threshold: score threshold
        :param top_n: top n
        :param user: unique user id
        :return: rerank result
        """
        if not isinstance(self.model_type_instance, RerankModel):
            raise Exception("Model type instance is not RerankModel")

        self.model_type_instance = cast(RerankModel, self.model_type_instance)
        return self._round_robin_invoke(
            function=self.model_type_instance.invoke,
            model=self.model,
            credentials=self.credentials,
            query=query,
            docs=docs,
            score_threshold=score_threshold,
            top_n=top_n,
            user=user,
        )

    def invoke_moderation(self, text: str, user: Optional[str] = None) -> bool:
        """
        Invoke moderation model

        :param text: text to moderate
        :param user: unique user id
        :return: false if text is safe, true otherwise
        """
        if not isinstance(self.model_type_instance, ModerationModel):
            raise Exception("Model type instance is not ModerationModel")

        self.model_type_instance = cast(ModerationModel, self.model_type_instance)
        return self._round_robin_invoke(
            function=self.model_type_instance.invoke,
            model=self.model,
            credentials=self.credentials,
            text=text,
            user=user,
        )

    def invoke_speech2text(self, file: IO[bytes], user: Optional[str] = None) -> str:
        """
        Invoke large language model

        :param file: audio file
        :param user: unique user id
        :return: text for given audio file
        """
        if not isinstance(self.model_type_instance, Speech2TextModel):
            raise Exception("Model type instance is not Speech2TextModel")

        self.model_type_instance = cast(Speech2TextModel, self.model_type_instance)
        return self._round_robin_invoke(
            function=self.model_type_instance.invoke,
            model=self.model,
            credentials=self.credentials,
            file=file,
            user=user,
        )

    def invoke_tts(self, content_text: str, tenant_id: str, voice: str, user: Optional[str] = None) -> Iterable[bytes]:
        """
        Invoke large language tts model

        :param content_text: text content to be translated
        :param tenant_id: user tenant id
        :param voice: model timbre
        :param user: unique user id
        :return: text for given audio file
        """
        if not isinstance(self.model_type_instance, TTSModel):
            raise Exception("Model type instance is not TTSModel")

        self.model_type_instance = cast(TTSModel, self.model_type_instance)
        return self._round_robin_invoke(
            function=self.model_type_instance.invoke,
            model=self.model,
            credentials=self.credentials,
            content_text=content_text,
            user=user,
            tenant_id=tenant_id,
            voice=voice,
        )

    def _round_robin_invoke(self, function: Callable[..., Any], *args, **kwargs):
        """
        Round-robin invoke
        :param function: function to invoke
        :param args: function args
        :param kwargs: function kwargs
        :return:
        """
        if not self.load_balancing_manager:
            return function(*args, **kwargs)

        last_exception = None
        while True:
            lb_config = self.load_balancing_manager.fetch_next()
            if not lb_config:
                if not last_exception:
                    raise ProviderTokenNotInitError("Model credentials is not initialized.")
                else:
                    raise last_exception

            try:
                if "credentials" in kwargs:
                    del kwargs["credentials"]
                return function(*args, **kwargs, credentials=lb_config.credentials)
            except InvokeRateLimitError as e:
                # expire in 60 seconds
                self.load_balancing_manager.cooldown(lb_config, expire=60)
                last_exception = e
                continue
            except (InvokeAuthorizationError, InvokeConnectionError) as e:
                # expire in 10 seconds
                self.load_balancing_manager.cooldown(lb_config, expire=10)
                last_exception = e
                continue
            except Exception as e:
                raise e

    def get_tts_voices(self, language: Optional[str] = None) -> list:
        """
        Invoke large language tts model voices

        :param language: tts language
        :return: tts model voices
        """
        if not isinstance(self.model_type_instance, TTSModel):
            raise Exception("Model type instance is not TTSModel")

        self.model_type_instance = cast(TTSModel, self.model_type_instance)
        return self.model_type_instance.get_tts_model_voices(
            model=self.model, credentials=self.credentials, language=language
        )


class ModelManager:
    def __init__(self) -> None:
        self._provider_manager = ProviderManager()

    def get_model_instance(self, tenant_id: str, provider: str, model_type: ModelType, model: str) -> ModelInstance:
        """
        Get model instance
        :param tenant_id: tenant id
        :param provider: provider name
        :param model_type: model type
        :param model: model name
        :return:
        """
        if not provider:
            return self.get_default_model_instance(tenant_id, model_type)

        provider_model_bundle = self._provider_manager.get_provider_model_bundle(
            tenant_id=tenant_id, provider=provider, model_type=model_type
        )

        return ModelInstance(provider_model_bundle, model)

    def get_default_provider_model_name(self, tenant_id: str, model_type: ModelType) -> tuple[str, str]:
        """
        Return first provider and the first model in the provider
        :param tenant_id: tenant id
        :param model_type: model type
        :return: provider name, model name
        """
        return self._provider_manager.get_first_provider_first_model(tenant_id, model_type)

    def get_default_model_instance(self, tenant_id: str, model_type: ModelType) -> ModelInstance:
        """
        Get default model instance
        :param tenant_id: tenant id
        :param model_type: model type
        :return:
        """
        default_model_entity = self._provider_manager.get_default_model(tenant_id=tenant_id, model_type=model_type)

        if not default_model_entity:
            raise ProviderTokenNotInitError(f"Default model not found for {model_type}")

        return self.get_model_instance(
            tenant_id=tenant_id,
            provider=default_model_entity.provider.provider,
            model_type=model_type,
            model=default_model_entity.model,
        )


class LBModelManager:
    def __init__(
        self,
        tenant_id: str,
        provider: str,
        model_type: ModelType,
        model: str,
        load_balancing_configs: list[ModelLoadBalancingConfiguration],
        managed_credentials: Optional[dict] = None,
    ) -> None:
        """
        Load balancing model manager
        :param tenant_id: tenant_id
        :param provider: provider
        :param model_type: model_type
        :param model: model name
        :param load_balancing_configs: all load balancing configurations
        :param managed_credentials: credentials if load balancing configuration name is __inherit__
        """
        self._tenant_id = tenant_id
        self._provider = provider
        self._model_type = model_type
        self._model = model
        self._load_balancing_configs = load_balancing_configs

        for load_balancing_config in self._load_balancing_configs[:]:  # Iterate over a shallow copy of the list
            if load_balancing_config.name == "__inherit__":
                if not managed_credentials:
                    # remove __inherit__ if managed credentials is not provided
                    self._load_balancing_configs.remove(load_balancing_config)
                else:
                    load_balancing_config.credentials = managed_credentials

    def fetch_next(self) -> Optional[ModelLoadBalancingConfiguration]:
        """
        Get next model load balancing config
        Strategy: Round Robin
        :return:
        """
        cache_key = "model_lb_index:{}:{}:{}:{}".format(
            self._tenant_id, self._provider, self._model_type.value, self._model
        )

        cooldown_load_balancing_configs = []
        max_index = len(self._load_balancing_configs)

        while True:
            current_index = redis_client.incr(cache_key)
            current_index = cast(int, current_index)
            if current_index >= 10000000:
                current_index = 1
                redis_client.set(cache_key, current_index)

            redis_client.expire(cache_key, 3600)
            if current_index > max_index:
                current_index = current_index % max_index

            real_index = current_index - 1
            if real_index > max_index:
                real_index = 0

            config = self._load_balancing_configs[real_index]

            if self.in_cooldown(config):
                cooldown_load_balancing_configs.append(config)
                if len(cooldown_load_balancing_configs) >= len(self._load_balancing_configs):
                    # all configs are in cooldown
                    return None

                continue

            if bool(os.environ.get("DEBUG", "False").lower() == "true"):
                logger.info(
                    f"Model LB\nid: {config.id}\nname:{config.name}\n"
                    f"tenant_id: {self._tenant_id}\nprovider: {self._provider}\n"
                    f"model_type: {self._model_type.value}\nmodel: {self._model}"
                )

            return config

        return None

    def cooldown(self, config: ModelLoadBalancingConfiguration, expire: int = 60) -> None:
        """
        Cooldown model load balancing config
        :param config: model load balancing config
        :param expire: cooldown time
        :return:
        """
        cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
            self._tenant_id, self._provider, self._model_type.value, self._model, config.id
        )

        redis_client.setex(cooldown_cache_key, expire, "true")

    def in_cooldown(self, config: ModelLoadBalancingConfiguration) -> bool:
        """
        Check if model load balancing config is in cooldown
        :param config: model load balancing config
        :return:
        """
        cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
            self._tenant_id, self._provider, self._model_type.value, self._model, config.id
        )

        res = redis_client.exists(cooldown_cache_key)
        res = cast(bool, res)
        return res

    @staticmethod
    def get_config_in_cooldown_and_ttl(
        tenant_id: str, provider: str, model_type: ModelType, model: str, config_id: str
    ) -> tuple[bool, int]:
        """
        Get model load balancing config is in cooldown and ttl
        :param tenant_id: workspace id
        :param provider: provider name
        :param model_type: model type
        :param model: model name
        :param config_id: model load balancing config id
        :return:
        """
        cooldown_cache_key = "model_lb_index:cooldown:{}:{}:{}:{}:{}".format(
            tenant_id, provider, model_type.value, model, config_id
        )

        ttl = redis_client.ttl(cooldown_cache_key)
        if ttl == -2:
            return False, 0

        ttl = cast(int, ttl)
        return True, ttl